• Title/Summary/Keyword: Zr alloy

Search Result 593, Processing Time 0.027 seconds

Corrosion Characteristics of TiN/Ti Multilayer Coated Ti-30Ta-xZr Alloy for Biomaterials (TiN/Ti 다층막 코팅된 생체용 Ti-30Ta-xZr 합금의 부식특성)

  • Kim, Y.U.;Cho, J.Y.;Choe, H.C.
    • Corrosion Science and Technology
    • /
    • v.8 no.4
    • /
    • pp.162-169
    • /
    • 2009
  • Pure titanium and its alloys are drastically used in implant materials due to their excellent mechanical properties, high corrosion resistance and good biocompatibility. However, the widely used Ti-6Al-4V is found to release toxic ions (Al and V) into the body, leading to undesirable long-term effects. Ti-6Al-4V has much higher elastic modulus than cortical bone. Therefore, titanium alloys with low elastic modulus have been developed as biomaterials to minimize stress shielding. For this reason, Ti-30Ta-xZr alloy systems have been studied in this study. The Ti-30Ta containing Zr(5, 10 and 15 wt%) were 10 times melted to improve chemical homogeneity by using a vacuum furnace and then homogenized for 24 hrs at $1000^{\circ}C$. The specimens were cut and polished for corrosion test and Ti coating and then coated with TiN, respectively, by using DC magnetron sputtering method. The analyses of coated surface were carried out by field emission scanning electron microscope(FE-SEM). The electrochemical characteristics were examined using potentiodynamic (- 1500 mV~+ 2000 mV) and AC impedance spectroscopy(100 kHz~10 mHz) in 0.9% NaCl solution at $36.5{\pm}1^{\circ}C$. The equiaxed structure was changed to needle-like structure with increasing Zr content. The surface defects and structures were covered with TiN/Ti coated layer. From the polarization behavior in 0.9% NaCl solution, The corrosion current density of Ti-30Ta-xZr alloys decreased as Zr content increased, whereas, the corrosion potential of Ti-30Ta-xZr alloys increased as Zr content increased. The corrosion resistance of TiN/Ti-coated Ti-30Ta-xZr alloys were higher than that of the TiN-coated Ti-30Ta-xZr alloys. From the AC impedance in 0.9% NaCl solution, polarization resistance($R_p$) value of TiN/Ti coated Ti-30Ta-xZr alloys showed higher than that of TiN-coated Ti-30Ta-xZr alloys.

A Study on the Alloy Design of High Capacity Ti-Based Metal Hydride for Ni/MH Rechargeable Battery (Ni/MH 2차 전지용 고용량 Ti계 수소저장합금의 설계에 관한 연구)

  • Lee, Han-Ho;Lee, Jai-Young
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.7 no.1
    • /
    • pp.19-28
    • /
    • 1996
  • Ti-Mn based hydrogen storage alloy were modified by substituting alloying elements such as Zr, V and Ni in order to design a high capacity MH electrode for Ni/MH rechargeable battery. When V was substituted in Ti-Mn binary system, the crystal structure was maintained as $Cl_4$ Laves phase at a composition of $Ti_{0.2}V_{0.4}Mn_{0.4}$ and $Ti_{0.4}V_{0.2}Mn_{0.4}$ and equilibrium pressure decreased below 1 atm without decreasing hydrogen storage capacity considerably. It was found that Ni should be included in Ti-V-Mn alloy in order to hydrogenate it electrochemically in KOH electrolyte. But substitution of Ni for Mn in Ti-V-Mn system caused the increase of equilibrium pressure above 1atm and decrease of hydrogen storage capacity. Zr was able to increase the reversible hydrogen storage capacity of Ti-V-Mn-Ni alloy without considerable change of hydrogenation properties. The electrochemical discharge capacity of Ti-Zr-V-Mn-Ni system were in the range of 350 - 464mAh/g and among them $Ti_{0.8}Zr_{0.2}V_{0.5}Mn_{0.5}Ni_{1.0}$ alloy had $Cl_4$ Laves single phase and very high electrochemical discharge capacity of 464mAh/g.

  • PDF

High Temperature Deformation Behavior of Sc Added Al-7.7wt%Zn-2.0wt%Mg-1.9wt%Cu Alloy (Sc을 첨가한 Al-7.7wt%Zn-2.0wt%Mg-1.9wt%Cu합금의 고온 변형거동)

  • Woo, Kee-Do;Ryu, Yong-Seok;Kim, Sug-Won;Deliang Zhang
    • Korean Journal of Materials Research
    • /
    • v.13 no.12
    • /
    • pp.819-824
    • /
    • 2003
  • The Al-7.7Zn-2.0Mg-1.9Cu-0.1Zr-0.1Sc alloy exhibited excellent elongation by the new thermomechanical treatment (TMT) process; solution treatment and furnace cooling\longrightarrowhot and cold rolling and then annealing for short time. Tensile test at high temperature from 430 to $500^{\circ}C$ has been performed with various strain rates using for the Al-7.7Zn-2.0Mg-1.9Cu-0.1Zr-0.1Sc alloy obtained by the TMT process. The elongation of the Al-7.7Zn-2.0Mg-1.9Cu-0.1Zr-0.1Sc was 550% tensile tested at $470^{\circ}C$ temperature and 2.2 $\times$ $10^{-3}$ $s^{-1}$ strain rate. The m value of Al-7.7Zn-2.0Mg-1.9Cu-0.1Zr-0.1Sc alloy deformed 85% increased from 0.33 to 0.46 with increasing total elongation. This new TMT process was very simple and easy to make the sheets in the company.

Crystallization Behavior and Kinetics of Cu-Zr-Al-Be Bulk Metallic Glass (Cu-Zr-Al-Be 비정질합금의 결정화거동 및 속도론)

  • Kim, Yu-Chan;Fleury, Eric;Seok, Hyun-Kwang;Cha, Pil-Ryung;Lee, Jin-Kyu;Lee, Jae-Chul
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.6
    • /
    • pp.338-344
    • /
    • 2008
  • The crystallization kinetics of the $Cu_{43}Zr_{43}Al_7Be_7$ bulk metallic glass were studied by differential scanning calorimetry(DSC) in the continuous heating and isothermal annealing modes. Only one major peak could be detected on the DSC traces of $Cu_{43}Zr_{43}Al_7Be_7$ bulk amorphous alloy, and the activation energy for crystallization corresponding to the peak determined by the Kissinger method was resulted of 239 kJ/mol. The isothermal kinetic, analyzed by the Johnson-Mehl-Avrami equation yielded values for the Avrami exponents in the range 1.69 to 2.37, which implied a crystallization governed by a three-dimensioned growth. Primary phases were essentially the cubic structure CuZr together with the $Cu_{10}Zr_7$ phase. At higher temperature, the CuZr disappeared while the $Cu_{10}Zr_7$ became predominant. After long term annealing at 731 K, the phases were $Cu_{10}Zr_7$, $Cu_2ZrAl$ and $Al_3Zr_5$.

Dynamic Deformation Behavior of Zr-Based Bulk Amorphous Alloy after Annealing Treatments (벌크형 비정질 Zr계 합금의 결정화 열처리에 따른 동적변형 거동)

  • Chang J. J;Lee B. J;Hwang J. I;Park I. M;Cho K. M;Cho Y. R
    • Korean Journal of Materials Research
    • /
    • v.14 no.3
    • /
    • pp.181-185
    • /
    • 2004
  • The mechanical properties of a bulk amorphous alloy ($Zr_{41.2}$ $Ti_{13.8}$ /$Cu_{10}$ $Ni_{10}$ $Be_{22.5}$ /at.%) before and after an annealing treatment were investigated. For the bulk amorphous alloy, the compressive strength was about 2.0 GPa, irrespective of the strain rates in the range of $10^{-4}$ to $10^3$$ sec^{-1}$ . Fine-sized nanocrystalline particles (10~100 nm) were precipitated homogeneously in the bulk amorphous matrix after the annealing treatments. Compared to the bulk amorphous materials, these composite materials, composed of the nanocrystalline phases and a bulk amorphous matrix had much different mechanical properties. The strength and strain of coposite materials measured by a compressive test showed a peak-maximum values at 7 vol.% of the nanocrystalline phases. The values in higher volume fraction of the crystalline phases in the amorphous matrix were decreased, as measured by both quasi-static and high strain rate. The decrease in fracture strength is due to presence of the dispersed large-crystalline phases in the amorphous matrix.

Effects of Minor Alloying Elements on the Mechanical Properties and Formability of Mg-3%Zn-0.5%Sn Base Sheet Alloys (Mg-3%Zn-0.5%Sn계 판재합금의 기계적 성질과 성형성에 미치는 미량합금원소의 영향)

  • Kim, Jeong-Min;Park, Joon-Sik;Kim, Ha-Young;Kim, Ki-Tae
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.21 no.2
    • /
    • pp.87-93
    • /
    • 2008
  • A variety of minor alloying elements such as Zr, Sr, Y, and Gd were added to Mg-3%Zn-0.5%Sn base alloy to form various fine precipitates and their effects on the microstructure, tensile properties, and sheet metal formability were investigated. Various very fine precipitates along with fine second phases were observed by the additions. It was found that Zr or Gd additive has a role to suppress the grain coarsening of alloy sheets during the hot working process. The Zr-added alloy showed the highest tensile elongation at $250^{\circ}C$ whereas the Gd-added alloy exhibited the best sheet metal forming characteristics in terms of CCV (conical cup value) and spring-back tendency.