• Title/Summary/Keyword: Zr addition

Search Result 576, Processing Time 0.019 seconds

Effects of ZrO2 Addition on Mechanical Strength and Thermal Shock Resistance of Cordierite-Mullite Ceramics (ZrO2가 코디어라이트-뮬라이트 세라믹스의 기계적 강도 및 내열충격성에 미치는 영향)

  • Lim, Jin-Hyeon;Kim, Shi Yeon;Yeo, Dong-Hun;Shin, Hyo-Soon;Jeong, Dae-yong
    • Korean Journal of Materials Research
    • /
    • v.28 no.12
    • /
    • pp.719-724
    • /
    • 2018
  • Cordierite composed of an alumina-silica-magnesia compound has a low coefficient of thermal expansion(CTE) and excellent thermal shock resistance. It also has a low dielectric constant and high electrical insulation. However, due to low mechanical strength, it is limited for use in a ceramic heater. In this study, $ZrO_2$ is added to an 80 wt% cordierite-20 wt% mullite composition, and the effect of $ZrO_2$ addition on the mechanical strength and thermal shock resistance is investigated. With an increasing addition of $ZrO_2$, cordierite-mullite formed $ZrO_2$, $ZrSiO_4$ and spinel phases. With sintering conducted at $1400^{\circ}C$ with the addition of 5 wt% $ZrO_2$ to 80 wt% cordierite-20 wt% mullite, the most dense microstructure forms along with an excellent mechanical strength with a 3-point flexural strength of 238MPa. When this composition is quenched in water at ${\Delta}T=400^{\circ}C$, the 3-point flexural strength is maintained. Moreover, when this composition is cooled from $800^{\circ}C$ to air, the 3-point flexural strength is maintained even after 100 cycles. In addition, the CTE is measured as $3.00{\times}10^{-6}{\cdot}K^{-1}$ at $1000^{\circ}C$. Therefore, 80 wt% cordierite-20 wt% mullite with 5 wt% $ZrO_2$ is considered to be appropriate as material for a ceramic heater.

The Effects of Ag Addition on the Electrode Properties of Hydrogen Storage Alloys (Zr계 수소저장합금의 전극특성에 미치는 은 첨가의 영향)

  • Noh, Hak;Jeong, So-yi;Choi, Seung-jun;Choi, Jeon;Seo, Chan-yeol;Park, Choong-Nyeon
    • Journal of Hydrogen and New Energy
    • /
    • v.8 no.3
    • /
    • pp.137-141
    • /
    • 1997
  • The effects of Ag addition to Zr-based hydrogen storage alloys ($Zr_{0.7}Ti_{0.3}V_{0.4}Ni_{1.2}Mn_{0.4}$, $Zr_{0.7}Ti_{0.3}V_{0.4}Ni_{1.2}Mn_{0.3}Cr_{0.1}$ and $Zr_{0.6}Ti_{0.4}V_{0.4}Ni_{1.2}Mn_{0.3}Fe_{0.1}$) on the electrode properties were examined. Ag-free and Ag-added Ze-based alloys were prepared by arc melting, crushed mechanically, and subjected to the electrochemical measurement. In $Zr_{0.7}Ti_{0.3}V_{0.4}Ni_{1.2}Mn_{0.4}$ alloy, 0.08 wt% Ag addition to the alloy improved the activation rate. Also Ag addition improved both activation property and discharge capacity in $Zr_{0.7}Ti_{0.3}V_{0.4}Ni_{1.2}Mn_{0.3}Cr_{0.1}$. For these Ag-added alloys, discharge capacities with the change of charge-discharge current density(10mA, 15mA and 30mA) are almost constant. Showing very high rate capability, discharge capacity of $Zr_{0.6}Ti_{0.4}V_{0.4}Ni_{1.2}Mn_{0.3}Fe_{0.1}$ alloy increased by Ag addition to the alloy. When the amount of Ag addition in $Zr_{0.7}Ti_{0.3}V_{0.4}Ni_{1.2}Mn_{0.4}$ alloy increased too much, the electrode properties became worse. Unveiling mechanism of effect of Ag addition is now progressing in our laboratory.

  • PDF

Preparation of Polyethersulfone Ultrafiltration Membranes Containing $ZrO_2$ Nanoparticles by Combining Phase-inversion Method/Sol-gel Technique (상변환/졸-겔법에 의한 $ZrO_2$ 나노입자 함유 Polyethersulfone 한외여과 막의 제조)

  • Youm, Kyung-Ho;Lee, Yun-Jae
    • Membrane Journal
    • /
    • v.16 no.4
    • /
    • pp.303-312
    • /
    • 2006
  • The asymmetric hybrid membranes of polyethersulfone (PES) and $ZrO_2$ nanoparticles were prepared via new one-step procedure combining simultaneously the phase-inversion method and the sol-gel technique. The optimum contents of $Zr(PrO)_4\;and\;HNO_3$ catalyst were determined by the adsorption experiments of phosphate anion onto the resulting hybrid membranes. The maximum adsorption of phosphate anion is obtained at the conditions of 0.15 mL $Zr(PrO)_4$ addition per 1 mL PES and 30 mL $HNO_3$ addition per 1 mL $Zr(PrO)_4$. Variation of morphology, performance and incorporated $ZrO_2$ amount of the resulting hybrid membranes were discussed and determined using SEM, pure water flux, TGA, ICP, XRD and contact angle measurements. Increasing $Zr(PrO)_4$ addition into casting solution, pure water flux is increased and $ZrO_2$ amount in the hybrid membrane is maximized at the conditions 0.15 mL $Zr(PrO)_4$ addition per 1 mL PES. The prephosphatation of PES-$ZrO_2$ hybrid membrane was studied to modify the surface characteristics of membrane. Ultrafiltration of bovine serum albumin (BSA) solution was performed in a dead-end cell using both a bare (non-phosphated) and a phosphated hybrid membrane. It is revealed that both the permeate flux and BSA rejection were increased as about 40% by prephosphatation of hybrid membrane. These results may be explained on the basis of the increase of membrane hydrophilicity, which was determined from contact angle measurements.

Influence of $ZrO_2$ on Microstructure and Mechanical Strength of Sintered Magnesia (마그네시아 소결체의 미세구조와 강도에 미치는 $ZrO_2$의 영향)

  • 이윤복;이종현;박홍채;오기동
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.9
    • /
    • pp.1053-1059
    • /
    • 1994
  • The influence of ZrO2 addition on microstructre and mechanical strength of magnesia ceramics were discussed. ZrO2 was existed as a cubic phase resulted from MgO solubility into ZrO2 on firing at temperature range from 130$0^{\circ}C$ to 1$600^{\circ}C$ for 2 h. The addition of ZrO2 markedly promoted the densification of MgO also above 150$0^{\circ}C$ and the sintered density at 1$600^{\circ}C$, 2 h reached to 95.2% of the theoretical. The solubility of MgO into c-ZrO2 was about 7.68 wt% and it was segregated at grain boundary on cooling to room temperature. ZrO2 existing as a second phase retarded the grain growth of MgO. The bending strength were increased to 240 MPa with the amount of ZrO2.

  • PDF

Influence of Addition Amount of CaCO3on the Synthesizing behavior and Microstructural Evolution of CaZrO3 and m-ZrO2 in 5ZrSiO4-xCaCO3 Mixture System (5ZrSiO4-xCaCO3 혼합계에서 CaCO3첨가량이 CaZrO3와 m-ZrO2의 합성 및 미세구조변화에 미치는 영향)

  • Kim, Jae-Won;Lee, Jae-Ean;Jo, Chang-Yong;Lee, Je-hyun;Jung, Yeon-Gil
    • Korean Journal of Materials Research
    • /
    • v.13 no.9
    • /
    • pp.572-580
    • /
    • 2003
  • Synthesizing behavior and microstructural evolution of $CaZrO_3$and $m-ZrO_2$in a thermal reaction process of $ZrSiO_4$-$xCaCO_3$mixtures, where x is 7 and 19, were investigated to determine the addition amount of CaO in CaO:$ZrO_2$:$SiO_2$ternary composition. CaZrO$_3$-Ca$_2$SiO$_4$precursor prepared by the mixture of $ZrSiO_4$and CaCO$_3$in aqueous suspending media was controlled to the acidic (pH=4.0) condition with HCI solution to enhance the thermal reaction. The addition amount of dispersant into the $ZrSiO_4$-$xCaCO_3$slip increased with increasing mole ratio of $CaCO_3$, which was associated with the viscosity of slip. Decarbonation reaction was activated with an increase of the addition amount of $CaCO_3$, showing different final temperatures in $ZrSiO_4$-$7CaCO_3$and $ZrSiO_4$-$19CaCO_3$mixtures as about 980 and 116$0^{\circ}C$, respectively, for finishing decarbonation reaction. The grain morphology was changed to spherical shape for all samples with an increase of sintering temperature. The grain size and phase composition of the synthesized composites depended on the mixture ratio of Zrsi04 and CacO3 powders, indicating that the main crystals were m-ZrO2 ($\leq$3 $\mu\textrm{m}$) and $CaZrO_3$ ($\leq$ 7 $\mu\textrm{m}$) in $ZrSiO_4$$>-7CaCO_3$and $ZrSiO_4$-$19CaCO_3$mixtures, respectively.

Preparation and Characterization of Porous Glass in $Na_2O-B_2O_3-SiO_2$ System ; Addition Effects of $ZrO_2$ and MgO (분상법을 이용한 봉규산염계 다공질 유리의 제조 및 특성;$ZrO_2$와 MgO 첨가 영향)

  • 김영선;최세영
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.3
    • /
    • pp.385-393
    • /
    • 1995
  • Akali-resistant porous glass was prepared by phase separation in Na2O-B2O3-SiO2 system containing ZrO2 and MgO. ZrO2 was added for alkali-resistance and MgO for anti-cracking during leaching. Optimal content of ZrO2 for alkali-resistance was 7wt% and devitrification by heat treatment resulted from further addition. Pore size and pore volume were decreased and specific surface area was increased with ZrO2 addition due to depression in phase separation. Addition of 3mol% MgO to mother glass containing 7wt% ZrO2 was effective for anti-crack during leaching. In this case, with phase separation at 55$0^{\circ}C$ and 5$25^{\circ}C$ for 20 hrs. crack-free porous glasses could be prepared. The relation between pore size r and heat treatment time t at 55$0^{\circ}C$ was D=25.58+18.16t. According to measurement of gas permeability, the mechanism of gas permeation was Knudsen flow. N2 and He permeability of porous glass which was prepared by heat treatment at 55$0^{\circ}C$ for 20 hrs. were 0.843$\times$10-7mol/$m^2$.s.Pa and 2.161$\times$10-7mol/$m^2$.s.Pa respectively.

  • PDF

Effects of ZrC and VC Addition on the Diffusion Induced Recrystallization of TiC--$Cr_3C_2$ (TiC-$Cr_3C_2$ 계 확산구동 재결정에 미치는 ZrC와 VC 첨가영향)

  • 채기웅
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.2
    • /
    • pp.223-227
    • /
    • 1996
  • The effect of ZrC and VC addition on the diffusion induced recrystallization (DIR) of TiC-Cr3C2 has been investigated. With in creasing the amount of added ZrC to Cr3C2 the DIR of TiC was suppressed at the begining and then occurred. On the contrary the DIR was accelerated with the addition of VC to Cr3C2 Because the lattice parameters of (Ti, Cr)C and (Ti,V)C are smaller and that of (Ti, Zr)C is larger than that of TiC the lattice parameter of (Ti,Cr,Zr)C is expected to be similar to that of TiC,. The results indicate that the strain energy due to lattice mismatch between TiC and solid-solution carbide is the driving force of the observed energy due to lattice mismatch between TiC and solid-solution carbide is the driving force of the observed DIR.

  • PDF

Sintering characteristics of monolithic ZrB$_{2 }$ and ZrB$_{2 }$-ZrC composit (단일상 ZrB$_{2 }$ 및 ZrB$_{2 }$- ZrC 복합체의 소결특성)

  • 김경훈;심광보
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.10 no.2
    • /
    • pp.145-151
    • /
    • 2000
  • The sintering behaviour of monolithic zirconium diboride (ZrB$_{2 }$) and ZrB$_{2 }$-based composite ZrB$_{2 }$-ZrC were studied using a pressureless sintering technique. The specimens were prepared using commercially available ZrB$_{2 }$ and ZrC powder which were pressed and subjected to pressureless sintering. The effects of lanthanum and neodymium used as sintering aids in the sintering processes were investigated. The sintered specimens were characterized using X-ray diffraction analysis and scanning electron microscopy. The ZrB$_{2 }$ specimen prepared using and addition of 1 wt% lanthanum and pressurelessly sintered at $2200^{\circ}C$ showed the maximum relative density of 96%. The ZrB$_{2 }$-ZrC composite specimen without the addition of any sintering aids exhibits the maximum sintered density but contains significantly detectable amount of secondary phase.

  • PDF

Microstructure Refinement and Strengthening Mechanisms of a 9Cr Oxide Dispersion Strengthened Steel by Zirconium Addition

  • Xu, Haijian;Lu, Zheng;Wang, Dongmei;Liu, Chunming
    • Nuclear Engineering and Technology
    • /
    • v.49 no.1
    • /
    • pp.178-188
    • /
    • 2017
  • To study the effects of zirconium (Zr) addition on the microstructure, hardness and the tensile properties of oxide dispersion strengthened (ODS) ferritic-martensitic steels, two kinds of 9Cr-ODS ferritic-martensitic steels with nominal compositions (wt.%) of $Fe-9Cr-2W-0.3Y_2O_3$ and $Fe-9Cr-2W-0.3Zr-0.3Y_2O_3$ were fabricated by the mechanical alloying (MA) of premixed powders and then consolidated by hot isostatic pressing (HIP) techniques. The experimental results showed that the average grain size decreases with Zr addition. The trigonal ${\delta}$-phase $Y_4Zr_3O_{12}$ oxides and body-centered cubic $Y_2O_3$ oxides are formed in the 9Cr-Zr-ODS steel and 9Cr non-Zr ODS steel, respectively, and the average size of $Y_4Zr_3O_{12}$ particles is much smaller than that of $Y_2O_3$. The dispersion morphology of the oxide particles in 9Cr-Zr-ODS steel is significantly improved and the number density is $1.1{\times}10^{23}/m^3$ with Zr addition. The 9Cr-Zr-ODS steel shows much higher tensile ductility, ultimate tensile strength and Vickers hardness at the same time.

Effect of Zinc and Zirconium on Microstructure and Mechanical Property in Squeeze Cast Magnesium Alloy (용탕단조 마그네슘합금의 조직과 기계적 성질에 미치는 Zn과 Zr의 영향)

  • Choi, Young-Doo;Choi, Jung-Chul;Chang, Si-Young
    • Journal of Korea Foundry Society
    • /
    • v.19 no.5
    • /
    • pp.403-409
    • /
    • 1999
  • Mg-Zn-Zr ternary alloys containing 6wt% Zn and (0, 0.4, 0.6)wt% Zr, which is added for grain refinement, can be cast into complex shape by squeeze casting. The influence of Zn and Zr as additional elements on microstructure and mechanical characteristics is investigated by OM, SEM, WDX, XRD and microvickers hardness measurement. The microstructure of Mg-Zn-Zr alloys consists of primary ${\alpha}-Mg$ and MgZn eutectic compound between dendrites. The grain size is decreased from $136{\mu}m$ to $97\;{\mu}m$ by Zr addition, resulting in that the hardness is increased from 42Hv to 59Hv. Furthermore, the grain size is changed to $83{\beta}$ and the hardness is increased to 65Hv by additional infiltration pressure. These results indicate that the Zr addition and additional infiltration pressure are effective for grain refinement acting as an important factor to increase the hardness. The increment in hardness by the Zr addition is slightly larger than that by the additional infiltration pressure.

  • PDF