• 제목/요약/키워드: Zr Alloys

검색결과 422건 처리시간 0.024초

벌크 아몰퍼스 금속의 충격파괴 거동 평가를 위한 미소 샬피 시험편을 사용한 계장화 충격 시험법 (Instrumented Impact Test using Subsize Charpy Specimen for Evaluating Impact Fracture Behavior in Bulk Amorphous Metals)

  • 신형섭;고동균;정영진;오상엽;김문생
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.101-106
    • /
    • 2003
  • In order to investigate the mechanical behavior of newly developed materials, the evaluation of mechanical properties using small-size specimen is essential. For those purposes, an instrumented impact testing apparatus, which provides the load-displacement curve under impact loading without oscillations, was devised. To develop the test procedure with the setup, the impact behaviors of various kinds of structural materials such as S45C, SCM4, Ti alloys (Ti-6V-4Al) and Zr-based bulk amorphous metal, were investigated through the instrumented Charpy V-notch impact tests. The calibrations of the dynamic load and displacement that was calculated based on the Newton' second law were carried out through the quasi-static load test and the comparison of a directly measured value using a laser displacement meter. Satisfactory results could be obtained. The crack initiation and propagation processes during impact fracture could be well divided on the curve, depending on the intrinsic characteristic of specimen tested; ductile or brittle. The absorbed impact energy in Zr-basd BAM was largely used for crack initiation not for crack propagation process. The fracture surfaces under impact loading showed different feature when compared with the static cases.

  • PDF

Magnetic resonance study on boron substituted amorphous FeZrMn alloys

  • A.N.Ulyanov;Tian, Sheng-Bo;Kim, Kyeong-Sup;V.Srinivas;Yu, Seong-Cho
    • 한국자기학회:학술대회 개요집
    • /
    • 한국자기학회 2003년도 하계학술연구발표회 및 한.일 공동심포지엄
    • /
    • pp.90-91
    • /
    • 2003
  • Amorphous magnetic materials with competing magnetic interactions are the subject of current interest. Critical behaviour studies have been performed in order to understand the nature of the phase transition at the Curie point (T$\sub$c/) and type of magnetic ordering below the T$\sub$c/. In some cases there exists a temperature interval in which the magnetic system consists of ferromagnetic grains separated by the paramagnetic interlayers. Magnetic properties of nanoparticles embedded in amorphous matrix also are the subject of recent interest. While these materials exhibit excellent soft magnetic properties at room temperature, some of them have been found to be superparamagnetic in the temperature range above the T$\sub$c/ of the matrix. Thus the role of different magnetic phases in the intergrain magnetic coupling can possibly be taken apart in a sufficiently broad temperature range and investigated separately. In particular materials with competing magnetic exchange interactions show characteristics of enhanced magnetoresistance and softer magnetic properties when magnetic nanocrystals are dispersed in amorphous matrix. We expect careful magnetic measurements in the vicinity of T$\sub$c/ would throw some light on magnetic behaviour of above materials. We present here the FMR analysis of Fe$\sub$82/Mn$\sub$8-x/B$\sub$x/Zr$\sub$10/ alloy near the Curie point.

  • PDF

Al-Li-Cu-Zr합금의 시효에 따른 인장파괴모드변화에 미치는 미세조직의 영향 (The Influence of Microstructures on the Change of Monotonic Tensile Fracture Mode in Al-Li-Cu-Zr Alloy with Ageing)

  • 정동석;이수진;조현기
    • 열처리공학회지
    • /
    • 제9권3호
    • /
    • pp.212-218
    • /
    • 1996
  • To clarify the influence of precipitation microstructure and inclusion on the monotonic tensile fracture behaviors in 2090 alloy aged at $180^{\circ}C$, the detailed measurement of hardness, tensile strength, elongation and the observation of scanning electron micrography, transmision electron micrography have been carried out. The transgranular shear ductile fracture has been observed in specimen quenched after solution treatment at $500^{\circ}C$ for 45min. While the under-aged specimen was fractured in both transgranular shear ductile and intergranular fracture mode, the fracture mode of peak-aged and over-aged alloy was predominantly intergranular fracture. The fracture behavior of each ageing condition was influenced by the change of precipitation microstructural features. In the case of peak-aged and over-aged alloys, the coarse and heterogeneous slip band caused by both shearable nature of the ${\delta}^{\prime}(Al_3Li)$ precipitates and PFZ along the high angle grain boundary aid the localization of deformation, resulting in low energy intergranular fracture. It was also estimated that the fractured T-type intermetallic phases (inclusion) and the equilibrium ${\delta}$(AlLi) phases which were formed at grain boundaries palyed an important role in promoting intergranular fracture mode.

  • PDF

High-temperature interaction of oxygen-preloaded Zr1Nb alloy with nitrogen

  • Steinbruck, Martin;Prestel, Stefen;Gerhards, Uta
    • Nuclear Engineering and Technology
    • /
    • 제50권2호
    • /
    • pp.237-245
    • /
    • 2018
  • Potential air ingress scenarios during accidents in nuclear reactors or spent fuel pools have raised the question of the influence of air, especially of nitrogen, on the oxidation of zirconium alloys, which are used as fuel cladding tubes and other structure materials. In this context, the reaction of zirconium with nitrogen-containing atmospheres and the formation of zirconium nitride play an important role in understanding the oxidation mechanism. This article presents the results of analysis of the interaction of the oxygen-preloaded niobium-bearing alloy $M5^{(R)}$ with nitrogen over a wide range of temperatures ($800-1400^{\circ}C$) and oxygen contents in the metal alloy (1-7 wt.%). A strongly increasing nitriding rate with rising oxygen content in the metal was found. The highest reaction rates were measured for the saturated ${\alpha}-Zr(O)$, as it exists at the metal-oxide interface, at $1300^{\circ}C$. The temperature maximum of the reaction rate was approximately 100 K higher than for Zircaloy-4, already investigated in a previous study. The article presents results of thermogravimetric experiments as well as posttest examinations by optical microscopy, scanning electron microscopy (SEM), and microprobe elemental analyses. Furthermore, a comparison with results obtained with Zircaloy-4 will be made.

Hall Effect and Resistivity of Amorphous $Fe_{83-x}Zr_{7}B_{10}Nb_{x}$ Alloys

  • Lee, Soo-Hyung;Yu, Seong-Cho;Xu, Jun-Hau;Rao, K.V.;Noh, Tae-Hwan;Kang, Il-Koo;Rhie, Kungwon
    • 한국자기학회지
    • /
    • 제5권5호
    • /
    • pp.841-845
    • /
    • 1995
  • The effect of small addition of Nb on the electrical resistivity and Hall coeffcient of the amorphous $Fe_{83}Zr_{7}B_{10}$ alloy and annealed ones ones below the crystallization temperature were investigated, which has been considered to be suitable for high frequency core material. At room temperature, their resistivities $\rho$ and the spontaneous Hall coeffcients $R_{s}$ are $~1.6\;{\mu}{\Omega}m$ and $~3{\times}10^{-8}m^{3}/As$, respectively. $R_{s}$ and $\rho$ are decreased with increasing temperature from 100 K to room temperature. Side-jump effect was adopted to analyze the effect of the small variation of conentration and annealing. The quantity of $R_{s}/{\rho}^{2}$ at room temperature, which is directly related to the electronic structure of the mother alloy, remained almost a constant except as quenched one as it can be predicted from the side-jump effect. The unexpected temperature dependence of $R_{s}/{\rho}^{2}$ measured at low fields much below Tc is left as a question.

  • PDF

HALL EFFECT AND RESISTIVITY OF AMORPHOUS $Fe_{83-x}Zr_{7}B_{10}Nb_{x}$ ALLOYS

  • Lee, Soo-Hyung;Yu, Seong-Cho;Xu, Jun-Hau;Rao, K.V.;Noh, Tae-Hwan;Kang, Il-Koo;Rhie, Kungwon
    • 한국자기학회지
    • /
    • 제5권5호
    • /
    • pp.772-777
    • /
    • 1995
  • The effect of small addition of Nb on the electrical resistivity and Hall coefficient of the amorphous $Fe_{83}Zr_{7}B_{10}$ alloy and annealed ones below the crystallization temperature were investigated, which has been considered to be suitable for high frequency core material. At room temperature, their resistivities $\rho$ and the spontaneous Hall coefficients $R_{s}$ are $~1.6\;{\mu}{\Omega}m$ and $~3{\times}10^{-8}m^{3}/As$, respectively. $R_{s}$ and $\rho$ are decreased with increasing temperature from 100 K to room temperature. Side-jump effect was adopted to analyze the effect of the small variation of concentration and annealing. The quantity of $R_{s}/{\rho}^{2}$ at room temperature, which is directly related to the electronic structure of the mother alloy, remained almost a constant except as quenched one as it can be predicted from the side-jump effect. We suggested the temperature dependence of $R_{s}/{\rho}^{2}$ can be compared to Ms{T}.

  • PDF

Ni-MH 전극용 $AB_2$계 수소저장합금의 볼밀링 처리에 의한 표면개질 연구 (Surface Modification of $AB_2$ Type Hydrogen Storage Alloys by Ball Milling for Ni-MH Battery)

  • 문홍기;박충년;유정현;박찬진;최전
    • 한국수소및신에너지학회논문집
    • /
    • 제17권4호
    • /
    • pp.418-424
    • /
    • 2006
  • In order to improve the activation properties of the $AB_2$ type hydrogen storage alloys for Ni-MH battery, the alloy surface was modified by employing high energy ball milling. The $Zr_{0.54}Ti_{0.45}V_{0.54}Ni_{0.87}Cr_{0.15}Co_{0.21}Mn_{0.24}$ alloy powder was ball milled for various period by using the high energy ball mill. As the ball milling time increased, activation of the $AB_2$ type composite powder electrodes were enhanced regardless of additives. When the ball milling time was small discharge capacities of the $AB_2$ type composite powder electrodes increased with the milling time. On the other hand for large milling time it decreased with increasing milling time. The maximum discharge capacity was obtained by ball milling for 3-4 min.

도재소부용 고금함유금합금의 연구 - 도재 결합층을 중심으로 - (A Study on Metal-Porcelain Fusing Layer in Porcelain Fused to High Gold Alloy)

  • 이기대;곽동주
    • 대한치과기공학회지
    • /
    • 제31권3호
    • /
    • pp.15-20
    • /
    • 2009
  • The success of the porcelain fused to gold alloy restoration depends not only on the choice of materials but to a larger degree on the technical skills. The porcelain fused to metal(PFM) alloys containing gold are commonly use for dental purposes in dental laboratory. The gold-colored alloys contain primarily gold, platinum, palladium, and silver, with minimum amounts of such metals as tin, iridium, or titanium. The purpose of this study is on the metal-porcelain fusing layer in porcelain fused to high gold alloy Principal results are as follows. The hardness number(Hv) of PFG is respectively $140.2{\pm}12.6$ in as-casted, $164.3{\pm}14.3$ in heat-treated, $186.6{\pm}20.4$ in fired-treated. The formation of the fusing(intermediate) layer caused by components fusing the interface of porcelain and gold alloy. The main components of the fusing(intermediate) layer are Na, Al, Si, K, Zn, Zr and Ce. The intermediate layer formed by the 2nd firing is more larger than the intermediate layer formed by the 1st firing.

  • PDF

A TISSUE RESPONSE TO THE TITANIUM ALLOY (Ti-13Zr-6Nb) IN VIVO

  • Kim Chang-Su;Lee Seok-Hyung;Shin Sang-Wan;Suh Kyu-Won;Ryu Jae-Jun
    • 대한치과보철학회지
    • /
    • 제42권6호
    • /
    • pp.619-627
    • /
    • 2004
  • Statement of problem. Mechanisms of tissue-implant interaction and the effect of the implant surface on the behavior of cells has not yet been clarified. Purpose. This study was performed to investigate the tissue reaction to the titanium alloy submerged into rat peritoneum in vivo. Materials and methods. Titanium alloys (titanium-13Zirconium-6Niobium) were inserted inside the peritoneal cavity of Sprague Dawley rats. After 3 months, the tissue formed around the inserted titanium alloys were examined with a light-microscope. Tissue reaction around the material was analyzed by confocal microscopy to evaluate their biocompatibility in a living body. Results. In in vivo study, foreign body type multinucleated giant cells were found in the fibrous tissue formed as a reaction to the foreign material (4 in 20 cases), but the inflammatory reaction was very weak. After experiment, the contaminants of biomaterials was removed from living tissue. In confocal microscopy, we observed that the staining of vinculin and actin showed mixed appearance. In a few cases, we found that the staining of vinculin and beta-catenin showed the prominent appearance. Conclusion. We found that titanium-13Zirconium-6Niobium alloy was an excellent biomaterial.

플라즈마 전해산화 처리된 마그네슘 합금의 내부식성에 미치는 코팅층 내 지르코니아 입자 영향 (Influence of ZrO2 Particulates on Corrosion Resistance of Magnesium Alloy Coated by Plasma Electrolytic Oxidation)

  • 남궁승;고영건;신기룡;신동혁
    • 대한금속재료학회지
    • /
    • 제48권9호
    • /
    • pp.813-818
    • /
    • 2010
  • In current automobile and electronic industries, the use of magnesium alloys where both energy and weight saving are attainable is increasing. Despite their light weight, there has been an inherent drawback arising from the surface vulnerable to be oxidized with ease, specifically under corrosive environments. To protect magnesium alloy from corrosion, the present work deals with the electrochemical response of the oxide layer on magnesium alloy specimen prepared by plasma electrolytic oxidation (PEO) method in an electrolyte with zirconia powder. Surface observation using scanning electron microscopy evidences that a number of zirconia particles are effectively incorporated into oxide layer. From the results of potentio-dynamic tests in 3.5 wt% NaCl solution, the PEO-treated sample containing zirconia particles shows better corrosion properties than that without zirconia, which is the result of zirconia incorporation into the coating layer. Corrosion resistance is also measured by utilizing salt spray tests for 120 hrs.