• Title/Summary/Keyword: Zoysiagrass(Zoysia japonica Steud)

Search Result 38, Processing Time 0.027 seconds

Factors Affecting Callus Induction and Plant Regeneration from Mature Seed of Zoysiagrass (Zoysia japonica Steud.) (들잔디 성숙종자로부터 캘러스배양 및 식물체 재분화에 미치는 몇 가지 요인의 영향)

  • 이상훈;김범수;원성혜;조진기;김기용;박근제;성병렬;이효신;이병현
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.24 no.1
    • /
    • pp.29-36
    • /
    • 2004
  • In an effort to optimize tissue culture responses of zoysiagrass(Zoysia japonica Steud.) for genetic transformation, factors affecting callus induction and plant regeneration were investigated. MS medium containing 3 mg/L 2,4-D was optimal for embryogenic callus induction from mature seed. The plant regeneration frequency of 73.3% was observed when embryogenic calli induced in this medium were transferred to N6 medium supplemented with 0.1 mg/L 2,4-D and 5 mg/L BA. Among several basic media, MS and N6 medium were optimal for callus induction and plant regeneration, respectively. Regenerated plants were grown normally when shoots transplanted to the soil. A rapid and efficient plant regeneration system established in this study will be useful for molecular breeding of turfgrass through genetic transformation.

Late Fall Nitrogen Application and Turf Cover for Zoysiagrass (Zoysia japonica) Spring Green-up

  • Oh, Jun-Suk;Lee, Yu-Jin;Lee, Sang-Kook
    • Weed & Turfgrass Science
    • /
    • v.4 no.4
    • /
    • pp.383-389
    • /
    • 2015
  • The use of zoysiagrass (Zoysia japonica Steud.) in the transition zone is limited because of a lack of cold hardiness although zoysiagrass has many advantages compared to other warm-season and cool-season grasses. Late-fall N fertilization is often applied for darker green color of turfgrass in early spring and more extensive root growth without rapid top growth. The objective of the study was to evaluate the effects of late fall N application and turf cover for zoysiagrass spring green-up. Clear polyvinyl chloride (PVC) film was used for turf cover. The amount of N applied were 5 and $10g\;N\;m^{-2}$ for the low and high N rate treatments, respectively. Covered zoysiagrass had greater turfgrass color and quality in early spring than non-covered zoysiagrass. The high N rate had 0.6 to 2.3 greater turfgrass quality than the low N rate on 7 of 9 rating dates. Slow-release N as late fall fertilization is more effective for turfgrass color and quality than fast-release N in spring. Turf cover could reduce the period of yellow zoysiagrass, and the earlier time of spring green-up could be advanced by increasing turfgrass quality and growth of zoysiagrass.

Presoaking with $GA_3$ Improves Germination of Zoysiagrass (Zoysia japonica Steud.) Seed on Poor Germination Conditions (발아불량 환경조건에서의 $GA_3$ 침지처리에 의한 들잔디의 종자발아촉진)

  • 구자형;윤병한
    • Asian Journal of Turfgrass Science
    • /
    • v.13 no.1
    • /
    • pp.21-28
    • /
    • 1999
  • The seeds of Zoysiagrass (Zoysia japonica Steud.) were soaked with GA3 50 ppm and primed with CaCl2 at -1.0 MPa for 4days at 23$^{\circ}C$ to identify presoaking and priming regimes that may improve germination in saline condition and with PEG 8000 at high temperature. Presoaked, primed, and untreated seeds were then germinated at 30 and $35^{\circ}C$. NaCl salinity stress consistently decreased the rate of germination of zoysiagrass seed. GA3 or CaCl2 alleviated the inhibitory effect of salinity on germination. However, total percent germination (G) and T50 of untreated control seeds significantly decreased and prolonged at $30^{\circ}C$ and $35^{\circ}C$ as NaCl salinity stress increased. Presoaked seeds with GA3 50 ppm for 4 days at $23^{\circ}C$ had significantly higher germination and lower T50 than untreated or primed with CaCl2 at -1.0 MPa for 4days at $23^{\circ}C$m and overcame the inhibitory effect of germination derived from PEG 8000. In addition, presoaked seed had higher, faster, and more uniform germination than untreated seeds after sowing in growing media in greenhouse.

  • PDF

Recent developments in biotechnological improvement of Zoysia japonica Steud. (형질전환 들잔디 개발의 최근 동향)

  • Sun, Hyeon-Jin;Song, In-Ja;Bae, Tae-Woong;Lee, Hyo-Yeon
    • Journal of Plant Biotechnology
    • /
    • v.37 no.4
    • /
    • pp.400-407
    • /
    • 2010
  • Zoysiagrass (Zoysia japonica Steud.), also called Korean or Japanese lawngrass, is the most popular warm-season turfgrass in Korea and is widely used for home lawns, parks, roadsides, golf courses and athletic fields. Its use is rapidly expanding in Korea and the other countries, due to its excellent characteristics which include tolerance to heat, drought and salinity. As the utilization area of this turfgrass increases, there is an increase in the demand for improved cultivars with disease and insect tolerance or with herbicide-tolerance or with extended greening periods. Conventional breeding methods have been used to improve the traits described above with limited success. However, with the advances in biotechnology, genetic transformation can be utilized for turfgrass improvement. In this paper, we review recent progress in biotechnological improvement of zoysiagrass and discuss future molecular breeding of this species.

Isolation and Sequence Analysis of Ycf4 Gene from Zoysia japonica Steud.

  • Kim, Yang Ji;Lee, Hyo Yeon;Hyun, Hwa Ja
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2018.10a
    • /
    • pp.100-100
    • /
    • 2018
  • Zoysia japonica Steud.(Zj) is a typical warm-season Korean lawn grass, which is used in many places such as river banks, roadside and soccer fields in Korea. Recently, it has also been used in school yards and the Saemangeum reclaimed land to reduce water pollution. Although the cultivated area of turfgrass is steadily increasing worldwide, it grows fast requiring frequent mowing and is difficult to grow in shady areas and the cold region. Therefore this study aims searching for useful gene(s) to develop abiotic stress tolerant and dwarf zoysiagrass. We isolated Ycf4 gene based on the sequence from Oryza sativa Japonica through RT-PCR and RACE PCR. Ultimately, open reading frame (ORF) of ZjYcf4 was 558bp long, encoding a protein of 186 amino acid residues. NCBI blast results showed that the ZjYcf4 protein is evolutionarily closely related to Ycf4 protein from Zoysia macrantha and Setaria italica (100% and 98%, respectively). To determine whether ZjYcf4 was involved in environmental stress in wild-type zoysiagrass, expression patterns of the gene were analyzed by real-time PCR under salt, cold and dark conditions. They were analyzed after each stress treatment for 3 hours. In salt and cold stresses, the expression was higher compared to control (3-fold and 1.5-fold, respectively), although there was a 1.6-fold decrease in expression under dark stress treatment. As reported previously, we suggest that ZjYcf4 gene affects abiotic stress such as salt, cold and dark.

  • PDF

Efficient Plant Regeneration Using Mature Seed-Derived Callus in Zoysiagrass (Zoysia japonica Steud.) (성숙종자 유래 캘러스를 이용한 들잔디 (Zoysia japonica Steud.)의 효과적인 식물체 재분화)

  • ;TOHYAMA, kohichi
    • Korean Journal of Plant Tissue Culture
    • /
    • v.28 no.2
    • /
    • pp.61-67
    • /
    • 2001
  • Using mature seed-derived callus, optimal conditions for efficient callus growth and plant regeneration, and regeneration efficiency by callus type were investigated in zoysiagrass (Zoysia japonica steud.). Callus induction was highest when the seeds were cultured on MS medium containing 2 mg/L 2,4-D, 0.2 mg/L BAP, 4 mg/L thiamine-HCl and 100 mg/L $\alpha$-ketoglutaric acid. Callus growth was highest when callus were cultured on MS medium containing 0.5 mg/L 2,4-D, 0.05 mg/L BAP, 4 mg/L thiamine-HCl and 100 mg/L $\alpha$-ketoglutaric acid. Plant regeneration was highest when callus was transferred on MS medium containing 3% maltose and 1 mg/L BAP, or 1 mg/L thidiazuron (TDZ). The combinations and concentrations of 2,4-D and BAP were shown to be critical factors for both the frequency and the type of callus. And four morphologically distinct types of callus were induced from the 2,4-D and BAP treatment. Type I,II and III calli produced shoots upon subculture, while the watery callus, type IV produced roots without shoots. Of four types of callus, type I exhibited the maximum frequency (82%) of shoot regeneration and the minimum frequency (4%) of albinism.

  • PDF

Growth of Zoysiagrass (Zoysia japonica Steud.) as Affected by Prohexadione-calcium Application (한국잔디에 대한 Prohexadione-calcium의 생장 억제 효과)

  • Lim, Sang-Muk;Choi, Bong-Su;Woo, Sun-Hee;Lee, Chul-Won
    • Korean Journal of Weed Science
    • /
    • v.31 no.2
    • /
    • pp.199-204
    • /
    • 2011
  • This experiment was carried out to investigate the growth responses of zoysiagrass (Zoysia japonica Steud.) as affected by prohexadione-calcium foliar application for the effective labour saving and cost down management in the lawn yard, field and golf course etc. The leaf growth of zoysiagrass treated with prohexadione-calcium one day after mowing was significantly slow compared to the untreated plot. And the effect was continued up to 50 days. The growth inhibition rate at the treated plot was 46 to 50% compared to untreated plot and the leaf widths treated with prohexadione-calcium were narrower than control plot. The change of leaf dry weight 10 days after prohexadione-calcium treated was significantly shown less speedy than untrated plot and the results were continued up to 40 days after application. The SPAD values of the leaf colour were increased in the treated plots and continued for 40 days more.

Effect of Silicate Fertilizer Application on Zoysiagrass (Zoysia japonica Steud.) Field (들잔디 재배지에서 규산질비료 살포 효과)

  • Bae, Eun-Ji;Kim, Chung-Yeol;Yoon, Jun Hyuck;Lee, Kwang-Soo;Park, Yong-Bae
    • Weed & Turfgrass Science
    • /
    • v.7 no.3
    • /
    • pp.247-257
    • /
    • 2018
  • This study was conducted to find out the optimum silicate fertilization for improving the quality and density of zoysiagrass (Zoysia japonica Steud.), the growth of zoysiagrass and changes in chemical properties of soil in field experiments treated with different levels of silicate fertilizer during 3 years from 2012 to 2014. An increase in the silicate fertilizer from 100, 200, to $400kg\;10a^{-1}$ led to a significant increase in the fresh and dry weight of shoots and stolons, the number of shoots and length of stolon, but were not significantly different between 200 and $400kg\;10a^{-1}$. Moreover, soil pH, EC and the contents of available $SiO_2$ were increased as the rate of silicate fertilizer application increased. Thus, these results demonstrated that the silicate fertilizer rate for maximum growth of zoysiagrass was $200kg\;10a^{-1}$ in consideration of improving growth of zoysiagrass and the chemical property of the soil.

Embryogenic cell suspension culture and plant regeneration in zoysiagrass (Zoysia japonica Steud) (한국들잔디 배아세포의 부유배양과 식물체 재생)

  • Fang, Wenjuan;Han, Liebao;Qi, Chunhui;Li, Deying;Park, Tae-Yun
    • Asian Journal of Turfgrass Science
    • /
    • v.23 no.2
    • /
    • pp.345-352
    • /
    • 2009
  • Zoysiagrass (Zoysia japonica Steud) is a warm season turfgrass species widely used for sports field and golf courses. Many cultivars are propagated through vegetative methods. This study was conducted to develop an optimum culture medium and culture conditions for embryogenic callus induction and plant regeneration, and to establish a cell suspension culture system for use in zoysiagrass breeding and propagation. The results indicated that adding $Cu^{++}$ at 2.5 mg $L^{-1}$ to the induction medium was optimum for callus induction. Increasing the numbers of sub-culture cycles improved the quality of calli. The optimum dosage for cell suspension culture ranged from 2.5 to 10 mL. The embryogenic callus suspension used in this study had a plant regeneration rate of 58%.

Selection of Male-sterile and Dwarfism Genetically Modified Zoysia japonica through Gamma Irradiation (감마선 처리에 의한 웅성불임 및 왜성형질의 유전자변형 들잔디(Zoysia japonica Steud.) 선발)

  • Bae, Tae-Woong;Song, In-Ja;Kang, Hong-Gyu;Jeong, Ok-Cheol;Sun, Hyeon-Jin;Ko, Suk-Min;Lim, Pyung-Ok;Song, Pill-Soon;Song, Sung Jun;Lee, Hyo-Yeon
    • Journal of Radiation Industry
    • /
    • v.4 no.3
    • /
    • pp.239-246
    • /
    • 2010
  • The aim of this study is selection of the male-sterile plant for inhibiting transgene flow through gamma-irradiation ($^{60}Co$) at the pollination and fertilization cycle of herbicide-tolerant genetically modified (GM) zoysiagrass (Zoysia japonica Steud.). High frequencies of plant mutations were obtained about 18% from $M_1$ generation at the doses (10 to 50 Gy). We also found that some $M_1$ plants showed male-sterile plants using de-husked seeds and comparison of stainable pollen using $KI-I_2$ solution. Besides the effects of irradiation on pollination and fertilization cycle, various other mutations like dwarf, cold tolerance, increasing grains and mass were observed. Four of dwarfism plants were selected through comparison of morphological characteristic between control and mutants during 4 years. These results demonstrated that the gamma-irradiation on pollination and fertilization cycle is very effective to induce the various mutations, and the male-sterile mutants are useful for controlling transgene flow and developing of high quality turfgasses.