• Title/Summary/Keyword: Zoom lens system

Search Result 69, Processing Time 0.022 seconds

Zoom Lens Design for a 10x Slim Camera using Successive Procedures

  • Park, Sung-Chan;Lee, Sang-Hun
    • Journal of the Optical Society of Korea
    • /
    • v.17 no.6
    • /
    • pp.518-524
    • /
    • 2013
  • This study presents a new design method for a zoom lens, in which real lens groups are designed successively to combine to form a lens modules zoom system. The lens modules and aberrations are applied to the initial design for a four-group inner-focus zoom system. An initial design with a focal length range of 4.2 to 39.9 mm is derived by assigning the first-order quantities and third-order aberrations to each module along with the constraints required for optimum solutions. After obtaining the lens module zoom system, the real lens groups are successively, not separately, designed to get a zoom lens system. Compared to the separately designed real lens groups, this approach can give a better starting zoom lens and save time. The successively designed groups result in a zoom system that satisfies the basic properties of the zoom system consisting of the original lens modules. In order to have a slim system, we directly inserted the right-angle prism in front of the first group. This configuration resulted in a compact zoom system with a depth of 12 mm. The finally designed zoom lens has an f-number of 3.5 to 4.5 and is expected to fulfill the requirements for a mobile zoom camera having high zoom ratio of 10x.

Design of an 8x Four-group Inner-focus Zoom System Using a Focus Tunable Lens

  • Lee, Daye;Park, Sung-Chan
    • Journal of the Optical Society of Korea
    • /
    • v.20 no.2
    • /
    • pp.283-290
    • /
    • 2016
  • This study presents an 8x four-group inner-focus zoom lens with one-moving group for a compact camera by use of a focus tunable lens (FTL). In the initial design stage, we obtained the powers of lens groups by paraxial design based on thin lens theory, and then set up the zoom system composed of four lens modules. Instead of numerically analytic analysis for the zoom locus, we suggest simple analysis for that using lens modules optimized. After replacing four groups with equivalent thick lens modules, the power of the fourth group, which includes a focus tunable lens, is designed to be changed to fix the image plane at all positions. From this design process, we can realize an 8x four-group zoom system having one moving group by employing a focus tunable lens. The final designed zoom lens has focal lengths of 4 mm to 32 mm and apertures of F/3.5 to F/4.5 at wide and tele positions, respectively.

Compact Zoom Lens Design for a 5x Mobile Camera Using Prism

  • Park, Sung-Chan;Lee, Sang-Hun;Kim, Jong-Gyu
    • Journal of the Optical Society of Korea
    • /
    • v.13 no.2
    • /
    • pp.206-212
    • /
    • 2009
  • This study presents the compact zoom lens with a zoom ratio of 5x for a mobile camera by using a prism. The lens modules and aberrations are applied to the initial design for a four-group inner-focus zoom system. An initial design with a focal length range of 4.4 to 22.0 mm is derived by assigning the first-order quantities and third-order aberrations to each module along with the constraints required for optimum solutions. We separately designed a real lens for each group and then combined them to establish an actual zoom system. The combination of the separately designed groups results in a system that satisfies the basic properties of the zoom system consisting of the original lens modules. In order to have a slim system, we directly inserted the right-angle prism in front of the first group. This configuration resulted in a more compact zoom system with a depth of 8 mm. The finally designed zoom lens has an f-number of 3.5 to 4.5 and is expected to fulfill the requirements for a slim mobile zoom camera having high zoom ratio of 5x.

Unified Analytic Calculation Method for Zoom Loci of Zoom Lens Systems with a Finite Object Distance

  • Ryu, Jae Myung;Oh, Jeong Hyo;Jo, Jae Heung
    • Journal of the Optical Society of Korea
    • /
    • v.18 no.2
    • /
    • pp.134-145
    • /
    • 2014
  • The number of lens groups in modern zoom camera systems is increased above that of conventional systems in order to improve the speed of the auto focus with the high quality image. As a result, it is difficult to calculate zoom loci using the conventional analytic method, and even the recent one-step advanced numerical calculation method is not optimal because of the time-consuming problem generated by the iteration method. In this paper, in order to solve this problem, we suggest a new unified analytic method for zoom lens loci with finite object distance including infinite object distance. This method is induced by systematically analyzing various distances between the object and other groups including the first lens group, for various situations corresponding to zooming equations of the finite lens systems after using a spline interpolation for each lens group. And we confirm the justification of the new method by using various zoom lens examples. By using this method, we can easily and quickly obtain the zoom lens loci not only without any calculation process of iteration but also without any limit on the group number and the object distance in every zoom lens system.

Design of an 8× Four-group Zoom System without a Moving Group by Considering the Overall Length

  • Park, Sung Min;Lee, Jea-Woo;Park, Sung-Chan
    • Current Optics and Photonics
    • /
    • v.6 no.1
    • /
    • pp.104-113
    • /
    • 2022
  • We present a method to count the overall length of the zoom system in an initial design stage. In a zoom-lens design using the concept of the group, it has been very hard to precisely estimate the overall length at all zoom positions through the previous paraxial studies. To solve this difficulty, we introduce Teq as a measure of the total track length in an equivalent zoom system, which can be found from the first order parameters obtained by solving the zoom equations. Among many solutions, the parameters that provide the smallest Teq are selected to construct a compact initial zoom system. Also, to obtain an 8× four-group zoom system without moving groups, tunable polymer lenses (TPLs) have been introduced as a variator and a compensator. The final designed zoom lens has a short overall length of 29.99 mm, even over a wide focal-length range of 4-31 mm, and an f-number of F/3.5 at wide to F/4.5 at tele position, respectively.

Zoom Lens Calibration for a Video Measuring System (컴퓨터 비젼을 이용한 정밀 측정 장비의 줌 렌즈 캘리브레이션)

  • Hahn, Kwang-Soo;Choi, Joon-Soo;Choi, Ki-Won
    • Journal of Internet Computing and Services
    • /
    • v.6 no.5
    • /
    • pp.57-71
    • /
    • 2005
  • Precise visual measurement applications, like video measuring system (VMS), use camera systems with motorized zoom lens for fast and efficient measurement. In this paper, we introduce an efficient calibration method for zoom lens of VMS controlled by servo motor. For the automated zoom lens calibration of the VMS, only zoom lens setting needs to be calibrated and parameters calibrated by zoom lens settings are image center and pixel size changed by zoom levels, The extrinsic parameters, like focus and iris, do not need to be calibrated since the parameters are usually fixed, It needs a lot of time and effort to calibrate the camera for ali the different zoom levels. In this paper, we also propose an efficient and fast zoom lens calibration method, which calculates the calibration parameters of the zoom lens settings for the minimum number of zoom levels and estimates other parameters for the uncalculated zoom levels using the interpolation of the calculated parameter values.

  • PDF

Zoom lens design for compact digital camera using lens modules (렌즈모듈을 이용한 컴팩트 디지털 카메라용 줌 렌즈 설계)

  • Park, Sung-Chan;Lee, Sang-Hun
    • Korean Journal of Optics and Photonics
    • /
    • v.16 no.1
    • /
    • pp.34-42
    • /
    • 2005
  • This paper presents the optimum initial design containing the first and third order properties of the three-group zoom system using lens modules, and the real lens design of the system. The optimum initial design with focal length range of 4.3 mm to 8.6 mm is derived by assigning appropriate first and third order quantities to each module along with the specific constraints required for the system. An initial real lens selected for each group has been designed to match its focal length and the first orders into those of the each lens modules, and then combined to establish an actual zoom system by adjusting the air space between the groups at all zoom positions. The combination of the separately designed groups results in a system which satisfies the first order properties of the zoom system composed of the original lens modules. As a result, by residual aberration correction, we could obtain a zoom system useful in compact digital zoom cameras and mobile phone cameras employing the rear focus method.

Performance Evaluation and Design of Zoom Lens Systems (Zoom Lens계의 성능 평가 및 설계)

  • Ji, Taek Sang
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.7 no.2
    • /
    • pp.113-121
    • /
    • 2002
  • Nowadays, developed camera, camcorder, CCTV and copier system accept a wide angle and a telephoto lens, and have an excellent capacity. Also, it is small as using aspheric surface. In this paper, after we evaluate and analyze two-group zoom lens system and three-group zoom lens system for camera, we refer to it, and design three-group zoom lens system for camera. Therefore, when we design a zoom lens system for camera, we use a symmetrical system. As using an aspheric surface, we can try to a miniaturization and an efficient improvement. We use optical valuable measure methods, a ray intercept plot, MTF and Seidel coefficient. So, we can confirm to have a similar level to compare with reference model.

  • PDF

A study on the Optical Properties of two component zoom copier lens system (2군 줌 복사기 렌즈계의 광학적 성능)

  • Ji, Taek Sang;Lim, Hyeon Seon;Kim, Bong Hwan
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.5 no.2
    • /
    • pp.119-125
    • /
    • 2000
  • We analyzed to calculate optical capacity after we chose established 2 component zoom copier lens system in this research. As the lens system is zoom lens system of finite object point, it has moving area limited not like to use generally camera zoom lens of infinite object point because it moves between object and image plane. The magnification of optical system can obtain -1.41~-0.64 i.e., extended or shortened image as transverse magnification, and it acquires f/12 and about $20^{\circ}$ field of view. Although this 2 component zoom copier lens system will be down resolution and dark compared with f/2.8 acquired at camera lens, it will be possibile to be able to make large aperture and it can acquire more better correct aberration with the addition of auxiliary group forward or backward.

  • PDF

Optical Design and Fabrication of a Large Telephoto Zoom Lens with Fixed f/2.8 and Light Autofocus Lens

  • Ryu, Jae Myung;Gang, Geon Mo;Lee, Hyuck Ki;Lee, Ki Woo;Heu, Min;Jo, Jae Heung
    • Journal of the Optical Society of Korea
    • /
    • v.19 no.6
    • /
    • pp.629-637
    • /
    • 2015
  • Compact system cameras (CSCs) are commonly used nowadays and feature enhanced video functions and thin yet light interchangeable lenses. They differ from digital single-lens reflex (DSLR) cameras in their lack of mirror boxes. CSCs, however, have autofocus (AF) speeds lower than those of conventional DSLRs, requiring weight reduction of their AF groups. To ensure the marketability of large telephoto zoom lenses with fixed f/2.8 regardless of field angle variation, in particular, light weight AF groups are essential. In this paper, we introduce a paraxial optical design method and present a new, large, telephoto zoom lens with f/2.8 regardless of the field angle variation, plus a lightweight AF group consisting of only one lens. Using the basic paraxial optical design and optimization methods, we fabricated a new and lighter zoom lens system, including a single-lens, lightweight AF group with almost the same performance.