• Title/Summary/Keyword: Zoom lens design

Search Result 66, Processing Time 0.02 seconds

Optical Properties of Aspheric Glass Lens using DLC Coated Molding Core (성형용 코어면 DLC 코팅에 의한 비구면 Glass렌즈 광학적 특성에 관한 연구)

  • Kim, Hyun-Uk;Cha, Du-Hwan;Lee, Dong-Gil;Kim, Sang-Suk;Kim, Hye-Jeong;Kim, Jeong-Ho;Jeong, Sang-Hwa
    • Korean Journal of Optics and Photonics
    • /
    • v.18 no.5
    • /
    • pp.362-366
    • /
    • 2007
  • In this research, the optimal grinding condition has been obtained by design of experiment (DOE) fur the development of aspheric lens for the 3 Mega Pixel, 2.5x optical zoom camera-phone module. Also, the tungsten carbide (WC) mold was processed by the method of ultra precision grinding under this optimal grinding condition. The influence of diamond-liked carbon (DLC) coating on form accuracy (PV) and surface roughness (Ra) of the mold was evaluated through measurements after DCL coating using ion plating on the ground mold. Also, aspheric glass lenses were molded, some before DLC coating of the mold and some after the DLC coating. The optical characteristics of each sample, molded by the different molds, were compared with each other.

Characteristics of π-shaped Ultrasonic Motor

  • Lim Kee-Joe;Park Seong-Hee;Yun Yong-Jin;Park Cheol-Hyun;Kang Seong-Hwa;Lee Jong-Sub
    • Journal of Electrical Engineering and Technology
    • /
    • v.1 no.2
    • /
    • pp.241-245
    • /
    • 2006
  • In this paper, the design and characteristics of a $\pi-shaped$ ultrasonic motor that is applicable to optical zoom operation of a lens system for mobile phones are investigated. Its design and simulation of performances are carried out by FEM (finite element method) commercial software. As a simulation result, by applying voltage with single phase, a combined vibration is produced at the surface of a stator arm. A prototype of the motor is fabricated and its outer size is $8*4*2mm^3$ including the cylindrical steel rod of 2 mm in diameter as the rotor. The motor exhibits a maximum speed of 500 rpm and a power consumption of 0.3 W when driven at 20 Vpp and 64 kHz.

Statistical Analysis of Focus Adjustment Method for a Floating Imaging System with Symmetric Error Factors (대칭형 공차를 갖는 플로팅 광학계의 상면 변화 보정 방법에 대한 통계적 해석)

  • Ryu, Jae Myung;Kim, Yong Su;Jo, Jae Heung;Kang, Geon Mo;Lee, Hae Jin;Lee, Hyuck Ki
    • Korean Journal of Optics and Photonics
    • /
    • v.23 no.5
    • /
    • pp.189-196
    • /
    • 2012
  • A floating optical system is a system that moves more than 2 groups to focus at the camera lens. At the camera optics, the floating system that is mainly used is an optical system such as a macro lens which changes magnification very much. When the floating system is assembled and fabricated in the factory, there are differences between the image plane of the sensor and the focal plane of the infinity or macro state. Therefore, in a considerable proportion of cases, the focus adjustment to minimize the difference of BWD(Back Working Distance) is carried out in the process of manufacturing. In this paper, in order to decide the movement of each group in a floating system, we evaluated the rotation angle of CAM for the focus adjustment. We know that the maximum magnification of macro state is corrected by this numerical method for the focus adjustment, too. We investigated the limit of CAM rotation angle of the system by using statistical analysis for CAM rotation angle, which uses the focus adjustment of the floating system with symmetric error factors.

A New Eye Tracking Method as a Smartphone Interface

  • Lee, Eui Chul;Park, Min Woo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.4
    • /
    • pp.834-848
    • /
    • 2013
  • To effectively use these functions many kinds of human-phone interface are used such as touch, voice, and gesture. However, the most important touch interface cannot be used in case of hand disabled person or busy both hands. Although eye tracking is a superb human-computer interface method, it has not been applied to smartphones because of the small screen size, the frequently changing geometric position between the user's face and phone screen, and the low resolution of the frontal cameras. In this paper, a new eye tracking method is proposed to act as a smartphone user interface. To maximize eye image resolution, a zoom lens and three infrared LEDs are adopted. Our proposed method has following novelties. Firstly, appropriate camera specification and image resolution are analyzed in order to smartphone based gaze tracking method. Secondly, facial movement is allowable in case of one eye region is included in image. Thirdly, the proposed method can be operated in case of both landscape and portrait screen modes. Fourthly, only two LED reflective positions are used in order to calculate gaze position on the basis of 2D geometric relation between reflective rectangle and screen. Fifthly, a prototype mock-up design module is made in order to confirm feasibility for applying to actual smart-phone. Experimental results showed that the gaze estimation error was about 31 pixels at a screen resolution of $480{\times}800$ and the average hit ratio of a $5{\times}4$ icon grid was 94.6%.

On the Design of LED Dimming Control System for Optical Zoom Lens (광학 줌렌즈를 위한 LED 조명 제어 시스템 설계)

  • Min, Jun Hong;Kim, Min Ho;Yang, Oh
    • Journal of the Semiconductor & Display Technology
    • /
    • v.13 no.4
    • /
    • pp.65-70
    • /
    • 2014
  • This paper is to improve the problem of the LED dimming control system using the conventional PWM and DAC method. The conventional PWM method controls the average current to switch dimming signal. This method generates the flicker when controlling at a low current. In order to solve the problem, this system prevents the flicker with the DAC method. The LED is lit at micro-current flowing in the LED. And offset voltage is generated in the output of the DAC when the DAC output is very low voltage as 0V. This was resolved by the voltage drop of the output voltage to construct a negative offset circuit. In addition, the LED current can't flow as set values because of overheating of FET. In order to solve the problem, the 16 bits ADC in the microprocessor is a more accurate current control receives the LED current in comparison with the set value. Therefore, the LED dimming control system proposed in this paper showed the accurate and reliable more than conventional systems.

The Design of an Intelligent Assembly Robot System for Lens Modules of Phone Camera.

  • Song, Jun-Yeob;Lee, Chang-Woo;Kim, Yeong-Gyoo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.649-652
    • /
    • 2005
  • The camera cellular phone has a large portion of cellular phone market in recent year. The variety of a customer demand makes a fast model change and the spatial resolution is changed from VGA to multi-mega pixel. The 1.3 mega pixel (MP) camera cellular phone was first released into the Korean market in October 2003. The major cellular phone companies released a 2MP camera cellular phone that supports zoom function and a 2MP camera cellular phone is settled down with the Korea cellular phone market. It makes a keen competition in price and demands automation for phone camera module. There is an increasing requirement for the automatic assembly to correspond to a fast model change. The hard automation techniques that rely on dedicated manufacturing system are too inflexible to meet this requirement. Therefore in this study, this system is designed with the flexibility concept in order to cope with phone camera module change. The system has a same platform that has X-Y-Z motion or X-Z motion with ${\mu}m$order accuracy. It has a special gripper according to the type of a component to be put together. If the camera model changes, the gripper may be updated to fit for the camera module. The controller of this system acquires the data sets that have the information about the assembly part by the tray. This information is obtained ahead of an inspection step. The controller excludes an inferior part to be assembled by using this information to diminish the inferior goods. The assembly jig used in this system has a function of self adjustment that reduces the tact time and also diminish the inferior goods. Finally, the intelligent assembly system for phone camera module will be designed to get a flexibility to meet model change and a high productivity with a high reliability.

  • PDF