• Title/Summary/Keyword: Zone melt growth

Search Result 32, Processing Time 0.022 seconds

Flux Pinning Enhancement in $(Y_{0.5}Nd_{0.25}Sm_{0.25})Ba_{2}Cu_{3}O_y$ Oxides by Zone Melt Growth Process

  • Kim So-Jung
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.5C no.6
    • /
    • pp.251-256
    • /
    • 2005
  • Directionally melt-textured high $T_c\;(Y_{0.5}Nd_{0.25}Sm_{0.25})Ba_{2}Cu_{3}O_y$ [(YNS)-123] superconductor was systematically investigated by the zone melt growth process in air. A sample prepared by this method showed well-textured microstructure, and $(Y_{0.5}Nd_{0.25}Sm_{0.25})_{2}BaCuO_5$[(YNS)211] inclusions were uniformly dispersed in large $(Y_{0.5}Nd_{0.25}Sm_{0.25})Ba_{2}Cu_{3}O_y$ [(YNS)123] matrix. High irreversibility field and magnetization hysteresis loop of the zone melt-textured (YNS)-123 sample exhibited the enhanced flux pinning, compared with $YBa_{2}Cu_{3}O_y$ (Y-123) sample without RE(rare earth). Critical current density of (YNS)-123 sample was $2.5{\times}10^4\;A/cm^2$ at 2 T and 77 K.

Effect of Hot-zone Aperture on the Growth Behavior of SiC Single Crystal Produced via Top-seeded Solution Growth Method

  • Ha, Minh-Tan;Shin, Yun-Ji;Bae, Si-Young;Park, Sun-Young;Jeong, Seong-Min
    • Journal of the Korean Ceramic Society
    • /
    • v.56 no.6
    • /
    • pp.589-595
    • /
    • 2019
  • The top-seeded solution growth (TSSG) method is an effective approach for the growth of high-quality SiC single crystals. In this method, the temperature gradient in the melt is the key factor determining the crystal growth rate and crystal quality. In this study, the effects of the aperture at the top of the hot-zone on the growth of the SiC single crystal obtained using the TSSG method were evaluated using multiphysics simulations. The temperature distribution and C concentration profile in the Si melt were taken into consideration. The simulation results showed that the adjustment of the aperture at the top of the hot-zone and the temperature gradient in the melt could be finely controlled. The surface morphology, crystal quality, and polytype stability of the grown SiC crystals were investigated using optical microscopy, high-resolution X-ray diffraction, and micro-Raman spectroscopy, respectively. The simulation and experimental results suggested that a small temperature gradient at the crystal-melt interface is suitable for growing high-quality SiC single crystals via the TSSG method.

Silicon Single Crystal Growth by Continuous Crystal Growth Method (연속성장법에 의한 Silicon 단결정 연속성장)

  • 인서환;최성철
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.3 no.2
    • /
    • pp.117-124
    • /
    • 1993
  • It was found that the basic principle of continuous crystal growth method was following as; the powder supplied from the feeding system is molten in the graphite crucible under the ambient gas. After forming the molten zone in the lower part of the crucible, the seed crystal is deeped into the melt and pulled down with the rotation so that the melt crystallized from the seed. When the lowering rate, rotation rate, feeding rate and temperature are correct, the single crystal can grow. The critical melt level, the feeding rate, the growth rate, the change of the shape of molten zone by the graphite susceptor and crucible, the position of work coil, the balance between the gravitational force of melt and the centrifugal force originated from the rotation of seed which are the variables of the crystal growth and the sintering phenomenon of melt surface were researched.

  • PDF

Crystal growth and pinning enhancement of directionally melt-textured$(Y_{0.5}Nd_{0.25}Sm_{0.25})Ba_2Cu_3O_y$ oxides in air

  • Kim So-Jung
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.15 no.5
    • /
    • pp.188-192
    • /
    • 2005
  • High $T_c(Y_{0.5}Nd_{0.25}Sm_{0.25})Ba_2Cu_3O_y[(YNS)-123]$ superconductors with/without $CeO_2$ additive were systematically investigated by the zone melt growth process in air. Cylindrical green rods of (YNS)-123 oxides were fabricated by cold isostatic pressing (CIP) method using rubber mould. A sample prepared by this method showed well-textured microstructure, and $(Y_{0.5}Nd_{0.25}Sm_{0.25})_2BaCuO_5[(YNS)211]$ nonsuperconducting inclusions were uniformly dispersed in large $(Y_{0.5}Nd_{0.25}Sm_{0.25})Ba_2Cu_3O_y$[(YNS)123] superconducting matrix. In this study, optimum melting temperature and growth rate were $1100^{\circ}C$ and 3 mm/hr, respectively. The directionally melt-textured (YNS)-123 sample with $CeO_2$ additive showed an onset critical temperature $(T_c)\;T_c{\geq}93K$ and sharp superconducting transition.

Thermal Stresses Near the Crystal-Melt Interface During the Floating-Zone Growth of CdTe Under Microgravity Environment (미세중력장 CdTe 흘로우팅존 생성에서 결정체-용융액 계면주위의 열응력)

  • Lee Kyu-Jung
    • Journal of computational fluids engineering
    • /
    • v.3 no.1
    • /
    • pp.100-107
    • /
    • 1998
  • A numerical analysis of thermal stress over temperature variations near the crystal-melt interface is carried out for a floating-zone growth of Cadmium Telluride (CdTe). Thermocapillary convection determines crystal-melt interfacial shape and signature of temperature in the crystal. Large temperature gradients near the crystal-melt interface yield excessive thermal stresses in a crystal, which affect the dislocations of the crystal. Based on the assumption that the crystal is elastic and isotropic, thermal stresses in a crystal are computed and the effects of operating conditions are investigated. The results show that the extreme thermal stresses are concentrated near the interface of a crystal and the radial and the tangential stresses are the dominant ones. Concentrated heating profile increases the stresses within the crystal, otherwise, the pulling rate decreases the stresses.

  • PDF

Spinel$(MgAl_2O_4)$ single crystal growth by floating zone method (Floating zone 법에 의한 Spinel$(MgAl_2O_4)$단결정 성장)

  • Seung Min Kang;Byong Sik Jeon;Keun Ho Orr
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.4 no.3
    • /
    • pp.325-335
    • /
    • 1994
  • The spinel $MgO.Al_20_3$ single crystals were grown by FZ (floating zone) method. Its melting point is about, $2135^{\circ}C$ and is important to the process of the growth from the melt. There have been some reports of the growth by Czochralski and Verneuil method. However, this study is the first trial to the spinel crystal with the application of FZ method. In this study, $MgAl_2O_4$ spinel crystals were grown by using FZ method which uses the ellipsoidal mirror furnace having infrared halogen lamps as a heat source. With dopants of transition metal ions, it was possible to melt the feed rod which does not absorb the infrared rays due to the transparent properties to infrared ray of spinel itself and the red, green and blue colored spinel single crystals could be grown more easily. As a conclusion, the purpose of this study is to find the spinel single crystal growth mechanism with respect to th growth interfaces and molten zone stability and to characterize the state of growth resulting from the concavity to the melt of interfaces.

  • PDF

Melt growth and superconducting properties of Sm-doped YBCO super-conductor by zone melting method (국부용융성장법으로 제조된 Sm이 첨가된 YBCO 초전도체의 용융온도 및 성장 속도에 따른 미세구조)

  • 김소정
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.14 no.2
    • /
    • pp.68-72
    • /
    • 2004
  • Sm-doped YBCO high $T_c$ superconductor was directionally grown by zone melt growth process in air atmosphere. Cylindrical green rods of $(Sm/Y)_{1.8}Ba_{2.4}Cu_{3.4}O_{7-x}$[(Sm/Y)1.8] oxides were fabricated by cold isostatic pressing (CIP) method using rubber mold. Based on the variation of melting temperature and growth rate, the microstructure and superconducting properties were systematically measured by using optical micrographs, TEM and SQUID magnetometer. In this study optimum melting temperature and growth rate were $1085^{\circ}C$ and 3.5 mm/hr respectively. Nonsuperconducting $(Sm/Y)_2BaCuO_5$ inclusions of (Sm/Y)1.8 superconductor were uniformly distributed within the superconducting (Sm/Y) $Ba_2Cu_3O^{7-x}$ matrix. The directionally melt-textured (Sm/Y)1.8 superconductor showed an onset $T_c$ $\geq$ 90K and sharp superconducting transition.

Flux Pinning Enhancement and Irreversibility Line of Sm doped YBCO Superconductor by Zone Melt Growth Process

  • Kim, So-Jung
    • Transactions on Electrical and Electronic Materials
    • /
    • v.5 no.2
    • /
    • pp.81-85
    • /
    • 2004
  • High T$\_$c/ (Sm/Y)$\_$1.8/Ba$\_$2.4/Cu$\_$3.4/O$\_$7-$\delta$/ [(Sm/Y)] superconductor, a combination of Y and Sm(50% each), was systematically investigated by the zone melt growth process. A sample prepared by this method showed well-textured microstructure, and (Sm/Y)$_2$BaCuO$\_$5/[(Sm/Y)211]inclusions were uniformly dispersed in large (Sm/Y)Ba$_2$Cu$_3$O$\_$y/ [(Sm/Y)123]matrix. The sample showed a sharp superconducting transition at 91 K. The magnetization measurements of the (Sm/Y)1.8 sample exhibited the enhanced flux pinning, compared with Y$\_$1.8/Ba$\_$2.4/Cu$\_$3.4/O$\_$7-$\delta$/(Y1.8) sample without Sm. Critical current densities of (Sm/Y) 1.8 sample was 3.5${\times}$10$^4$A/$\textrm{cm}^2$ at 1 T and 77 K.

Effects of the crystal rotation on heat transfer and fluid flow in the modified floating-zone crystal growth (수정된 부유띠결정성장법에서 결정봉의 회전이 유동 및 열전달에 미치는 효과)

  • Seo, Jeong-Se
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.10
    • /
    • pp.3322-3333
    • /
    • 1996
  • A numerical analysis has been conducted to investigate a modified floating-zone crystal growth process in which most of the melt surface is covered with a heated ring. The crystal rod is not only pulled downward but rotated around its axisymmetric line during crystal growth process in order to produce the flat interface of crystal growth and the single crystal growth of NaNO3 is considered in 6mm diameter. The present study is made from a full-equation-based analysis considering a pulling velocity in all of solid and liquid domains and both of solid-liquid interfaces are tracked simultaneously with a governing equation in each domain. Numerical results are mainly presented for the comparison of the surface shape of rotational crystal rod with that of no-rotational crystal rod and the effects of revolution speeds of the crystal rod. Results show that the rotation of crystal rod produces more its flat surface. In addition, the shape of crystal growth near the centerline is more concaved with the increase in the revolution speed of crystal rod. The flow pattern and temperature distribution is analyzed and presented in each case. As the pulling velocity of crystal rod is increasing, the free surface of the melt below the heated ring is enlarged due to the crystal interface migrating downward.

Microstructure of the (Nd/Y)-Ba-Cu-O superconductors by floating zone melt growth process (부유대역용융성장법을 이용한 (Nd/Y)-Ba-Cu-O계 초전도체의 미세구조)

  • 김소정
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.13 no.2
    • /
    • pp.83-87
    • /
    • 2003
  • $(Nd/Y)_{1.8}Ba_{}2.4Cu_{3.4}O_{7-x}$high $T_c$ superconductor was directionally grown by floating Bone melt growth process with a large temperature gradient in air. Cylindrical green rods of (Nd/Y)1.8 oxides were fabricated by cold isostatic pressing (CIP) method using rubber mold. Microstructures were observed by SEM and TEM and superconducting properties were measured by a SQUID magnetometer. Nonsuperconducting $(Nd/Y)_2BaCuO_5$ inclusions were uniformly distributed within the superconducting $(Nd/Y)Ba_2Cu_3O_x$ matrix. The directionally melt-textured (Nd/Y) 1.8 superconductor showed an onset Tc $\geq$ 90 K and a sharp superconducting transition.