• 제목/요약/키워드: ZntR

검색결과 3건 처리시간 0.019초

Modulating the Properties of Metal-Sensing Whole-Cell Bioreporters by Interfering with Escherichia coli Metal Homeostasis

  • Yoon, Youngdae;Kang, Yerin;Lee, Woonwoo;Oh, Ki-Cheol;Jang, Geupil;Kim, Bong-Gyu
    • Journal of Microbiology and Biotechnology
    • /
    • 제28권2호
    • /
    • pp.323-329
    • /
    • 2018
  • In Escherichia coli, the transcription of genes related to metal homeostasis is activated by the presence of target metals. The promoter regions of those genes can be fused with reporter genes to generate whole-cell bioreporters (WCBs); these organisms sense the presence of target metals through reporter gene expression. However, the limited number of available promoters for sensing domains restricts the number of WCB targets. In this study, we have demonstrated an alternative method to generate novel WCBs, based on the notion that since the sensing mechanisms of WCBs are related to metal transportation systems, their properties can be modulated by disrupting metal homeostasis. Mutant E. coli strains were generated by deleting the znt-operon genes zntA, which encodes a zinc-export protein, and zntR, which encodes a znt-operon regulatory protein, to investigate the effects on the metal-sensing properties of WCBs. Deletion of zntA increased the sensitivity but abolished the selectivity of cadmium-sensing WCBs, whereas arsenic-sensing WCBs gained sensitivity toward cadmium. When zntR was deleted, cadmium-sensing WCBs lost the ability to detect cadmium, and this was recovered by introducing exogenous zntR. In addition, the metal-binding site of ZntR was genetically engineered to modulate metal selectivity. This study provides a valuable platform for the development of novel E. coli-based WCBs.

Modulation of the Metal(loid) Specificity of Whole-Cell Bioreporters by Genetic Engineering of ZntR Metal-Binding Loops

  • Kim, Hyojin;Jang, Geupil;Kim, Bong-Gyu;Yoon, Youngdae
    • Journal of Microbiology and Biotechnology
    • /
    • 제30권5호
    • /
    • pp.681-688
    • /
    • 2020
  • Bacterial cell-based biosensors, or whole-cell bioreporters (WCBs), are an alternative tool for the quantification of hazardous materials. Most WCBs share similar working mechanisms. In brief, the recognition of a target by sensing domains induces a biological event, such as changes in protein conformation or gene expression, providing a basis for quantification. WCBs targeting heavy metal(loid)s employ metalloregulators as sensing domains and control the expression of genes in the presence of target metal(loid) ions, but the diversity of targets, specificity, and sensitivity of these WCBs are limited. In this study, we genetically engineered the metal-binding loop (MBL) of ZntR, which controls the znt-operon in Escherichia coli. In the MBL of ZntR, three Cys sites interact with metal ions. Based on the crystal structure of ZntR, MBL sequences were modified by site-directed mutagenesis. As a result, the metal-sensing properties of WCBs differed depending on amino acid sequences and the new selectivity to Cr or Pb was observed. Although there is room for improvement, our results support the use of currently available WCBs as a platform to generate new WCBs to target other environmental pollutants including metal(loid)s.

Proteus mirabilis 전사 조절 단백질의 DNA 결합 특성 (DNA Binding Specificity of Proteus mirabilis Transcription Regulator)

  • 강종백
    • 미생물학회지
    • /
    • 제47권2호
    • /
    • pp.158-162
    • /
    • 2011
  • Proteus mirabilis 전사 조절($\underline{P}$roteus $\underline{m}$irabilis $\underline{t}$ranscription $\underline{r}$egulator ) 단백질의 중금속 결합 부위에 대한 아미노산 서열분석에서 PMTR 단백질은 ZntR (아연 저항성) 단백질이 아닌 CueR (구리 저항성) 단백질과 동일한 환경이다. 그리고 겔시프트 법(gel shift assay) 실험에 의하면 PMTR 단백질은 Escherichia coli의 zntA (zinc-translocating P-type ATPase gene) 프로모터에 결합하지 않고 copA (copper-translocating P-type ATPase gene) 프로모터와 Proteus mirabilis에서 atpase (copper-translocating P-type ATPase gene) 프로모터에 결합하였다. DNase I protection 실험에서 PMTR 단백질 결합부위와 DNase I 민감성 염기들이 관찰되었다. P. mirabilis atpase 프로모터에서 민감성 염기로 주형가닥(template strand)에서 C와 A 그리고 비주형가닥(non-template strand)에서 G와 C 염기들이다. 이런 민감성 염기들은 다른 MerR 패밀리 단백질에서 또한 관찰되었으며, 이것은 단백질에 의한 DNA bending을 의미한다.