• Title/Summary/Keyword: ZnS-$SiO_2$

Search Result 225, Processing Time 0.03 seconds

Gahnite-Sillimanite-Garnet Mineral Assemblage from the Host Rocks of the Cannington Deposit, North Queensland, Australia: Relationship between Metamorphism and Zn-Mineralization (호주 퀸즈랜드 주 캔닝턴 광상 모암의 아연-첨정석-규선석-석류석에 관한 연구 :변성작용과 아연-광화작용에 대해서)

  • Kim Hyeong Soo
    • Journal of the Mineralogical Society of Korea
    • /
    • v.17 no.4
    • /
    • pp.309-325
    • /
    • 2004
  • The Cannington Ag-Pb-Zn deposit, northwest Queensland, Australia developed around the host rocks composing banded and migmatitic gneisses, sillimanite-garnet schist and amphibolite. Three crystal habits of sillimanite, gahnite (Zn-spinel) and garnet porphyroblasts occurred on the host rocks of the Cannington deposit could be used to delineate metamorphism that closely associated with Zn-mineralization in the deposit. Linkages the metamorphism to Zinc-mineralization is determined in four chemical systems, KFMASH (K$_2$O-FeO-MgO-Al$_2$O$_3$-SiO$_2$-$H_2O$), KFMASHTO (K$_2$O-FeO-MgO-Al$_2$O$_3$-SiO$_2$-$H_2O$-TiO$_2$-Fe$_2$O$_3$), NCKFMASH (Na$_2$O-CaO-K$_2$O-FeO-MgO-AlO$_3$-SiO$_2$-$H_2O$) and MnNCK-FMASH (MnO-Na$_2$O-CaO-K$_2$O-FeO-MgO-AlO$_3$-SiO$_2$-$H_2O$), using THERMOCALC program (version 3.1; Powell and Holland 1988). Partial melting in MnNCKFMASH and NCKFMASH systems occurs at lower temperature than in the KFMASH and KFMASHTO systems. The partial melting temperature decreases with increasing of Na/(Na+Ca+K) of the bulk rock compositions in the MnNCKFMASH system. The host rocks have melted ca 15 vol.% in the MnNCKFMASH system at peak metamorphic conditions (634$\pm$62$^{\circ}C$ and 4.8$\pm$1.3 kbar), but partial melting have not occurred in KFMASHTO system. Based on calculations of sillimanite isograd in different systems and sillimanite modal pro-portion, prismatic and rhombic sillimanite and gahnite porphyroblasts including prismatic sillimanite inclusion probably have resulted from pressure and temperature increasing through partial melting (from 550~$600^{\circ}C$, 2.0~3.0 kbar to 700~75$0^{\circ}C$, 5.0~7.0 kbar), furthermore have experienced N-S then W-E crustal shortening during D$_1$ and D$_2$ deformation. Consequently, Zinc mineralization related to gahnite growth occurred during D$_2$ and was redistributed and upgraded by partial melting and retrograde metamorphism into structural and rheological sites during shearing in D$_3$.

Characteristics of nanocrystalline ZnO films grown on polyctystalline AlN for wireless chemical sensors (무선 화학센서용으로 다결정 AlN 위에 성장된 나노결정질 ZnO 막의 특성)

  • Song, Le Thi;Chung, Gwiy-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.252-252
    • /
    • 2009
  • In this work, the nanocrystalline ZnO/polycrystalline (poly) aluminum nitride (AlN)/Si structure was fabricated for humidity sensor applications based on surface acoustic wave (SAW). In this structure, the ZnO film was used as sensing material layer. These ZnO and AlN(0002) were deposited by so-gel process and a pulse reactive magnetron sputtering, respectively. These experimental results showed that the obtained SAW velocity on AlN film was about 5128 m/s at $h/\lambda$=0.0125 (h and $\lambda$ is thickness and wavelength, respectively). For ZnO sensing layers coated on AlN, films have hexagonal wurtzite structure and nanometer particle size. The crystalline size of ZnO films annealed at 400, 500, and 600 $^{\circ}C$ is 10.2, 29.1, and 38 nm, respectively. Surface of the film exhibits spongy which can adsorb steam in the air. The best quality of the ZnO film was obtained with annealing temperature at 500 $^{\circ}Cis$. The change in frequency response (127.9~127.85 MHz) of the SAW humidity sensor based on ZnO/AlN structure was measured along the change in humidity (41~69%). The structural properties of thin films wereinvestigated by XRD and SEM.

  • PDF

수열합성법에 의한 Y-ZnO 나노구조물의 제작과 특성

  • Heo, Seong-Eun;Lee, Byeong-Ho;Lee, Hwang-Ho;Kim, Chang-Min;Kim, Won-Jun;Sharma, S.K.;Lee, Se-Jun;Kim, Deuk-Yeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.200.2-200.2
    • /
    • 2013
  • Yttrium (Y)이 도핑 된 ZnO 나노 구조물을 수열합성법으로 제작하였다. 먼저 졸겔법으로 SiO2/Si 기판 위에 seed layer (Y-doped ZnO ; Y0.02Zn0.98O)를 제작하였으며 5번의 코팅을 진행하여 박막의 두께는 약 180 nm로 측정이 되었다. 그 후 진공 분위기에서 RTA를 이용하여 $500^{\circ}C$에서 3분간 열처리가 진행되었다. 이어서 수열합성법으로 mole 농도를 0.5~1.0 M 범위에서 변화시키며 YZO 시료를 제작하였다. X-ray diffraction (XRD)을 통해서 Y2O3 또는 결함과 관련된 피크는 관찰이 되지 않았으며, 모든 구조물에서 압축응력이 존재하는 알 수 있었으며, field emission scanning electron microscope (FESEM)에서 나노 구조물의 크기와 형태는 수열합성법의 mole 농도에 많은 영향을 받는 것으로 나타났다. Hall effect 측정을 통해서 모든 구조물은 n-type 전도 특성을 가지는 것으로 나타났다. 또한 광학적 특성인 photoluminescence (PL)에서는 수열합성법의 화학식을 고려할 때 Zn가 rich한 상태에서는 Zn interstitial로 존재하는 것으로 나타났고, mole 농도가 높아 질수록 free exciton에 의한 재결합인 UV emission이 우세하게 나타났다.

  • PDF

Plasmonic Nanosheet towards Biosensing Applications

  • Tamada, Kaoru
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.105-106
    • /
    • 2013
  • Surface plasmon resonance (SPR) is classified into the propagating surface plasmon (PSP) excited on flat metal surfaces and the local surface plasmon (LSP) excited by metalnanoparticles. It is known that fluorescence signals are enhanced by these two SPR-fields.On the other hand, fluorescence is quenched by the energy transfer to metal (FRET). Bothphenomena are controlled by the distance between dyes and metals, and the degree offluorescence enhancement is determined by the correlation. In this study, we determined thecondition to achieve the maximum fluorescence enhancement by adjusting the distance of ametal nanoparticle 2D sheet and a quantum dots 2D sheet by the use of $SiO_2$ spacer layers. The 2D sheets consisting of myristate-capped Ag nanoparticles (AgMy nanosheets) wereprepared at the air-water interface and transferred onto hydrophobized gold thin films basedon the Langmuir-Schaefer (LS) method [1]. The $SiO_2$ sputtered films with different thickness (0~100 nm) were deposited on the AgMy nanosheet as an insulator. TOPO-cappedCdSe/CdZnS/ZnS quantum dots (QDs, ${\lambda}Ex=638nm$) [2] were also transferred onto the $SiO_2$ films by the LS method. The layered structure is schematically shown in Fig. 1. The result of fluorescence measurement is shown in Fig. 2. Without the $SiO_2$ layer, the fluorescence intensity of the layered QD film was lower than that of the original QDs layer, i.e., the quenching by FRET was predominant. When the $SiO_2$ thickness was increased, the fluorescence intensity of the layered QD film was higher than that of the original QDs layer, i.e., the SPR enhancement was predominant. The fluorescence intensity was maximal at the $SiO_2$ thickness of 20 nm, particularly when the LSPR absorption wavelength (${\lambda}=480nm$) was utilized for the excitation. This plasmonic nanosheet can be integrated intogreen or bio-devices as the creation point ofenhanced LSPR field.

  • PDF

Electrical and mechanical property of ZnO wire using catalyst-free chemical vapor deposition

  • Lee, Jin-Kyung;Jung, Un-Seok;Kim, Hak-Seong;Yun, Ho-Yeo;Seo, Mi-Ri;Jonathan, Ho;Choi, Mi-Ri;Wan, Jae;Kim, Gyu-Tae;Lee, Sang-Wook
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.477-477
    • /
    • 2011
  • In this paper, we synthesize ZnO wire on Si substrate by catalyst-free thermal chemical vapor deposition (CVD). Each ZnO wire is grew up at different condition such as temperature and O2 flow rate. The Young's modulus of individual ZnO wires were estimated using quasi-static and dynamic measurements, as well as resonance frequency measurements. Using this system, current-voltage characteristics of each ZnO wire structure fabricated on a trench were measured. A new concept of electromechanical device structure combined with the piezoelectric effect of ZnO will be suggested in the end of this paper.

  • PDF

Electron Reflecting Layer with the WO3-ZnS:Cu.Al-PbO-SiO2 System Concerned in Doming Property of Shadow Mask in CRT

  • Kim, Sang-Mun;Cho, Yoon-Lae
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.12
    • /
    • pp.1124-1127
    • /
    • 2002
  • In this paper, we studied the effects of the electron reflection on shadow mask on which the electron reflecting materials with $WO_3-ZnS:Cu.Al-PbO-SiO_2$ system were screen-printed and we evaluated the variation of the electron beam mislanding in CRT. As a result, the green emitted spectra on the electron reflecting layer are observed due to the transformation of the electron energy, when the electron impacted on shadow mask. The beam mislanding is reduced about 40% in comperision with that of CRT made by the conventional method.

High Temperature Desulfurization over ZnO-Fe2O3 Mixed Metal Oxide Sorbent (ZnO-Fe2O3 복합금속 산화물을 이용한 고온에서의 황화수소 제거에 관한 연구)

  • Lee, Jae-Bok;Lee, Young-Soo;Yoo, Kyong-Ok
    • Journal of Environmental Health Sciences
    • /
    • v.20 no.1
    • /
    • pp.62-67
    • /
    • 1994
  • Introduction : Recently, water and environmental pollution becomes serious social problem and high technology makes this pollution accelerate. Hydrogen sulfide, the main subject of our research, is one of the most dangerous air pollutant like SO$_x$ and NO$_x$. The major contaminant in coal gasification is H$_2$S, which is very toxic, hazardous and extremely corrosive. Therefore, control of hydrogen sulfide to a safe level is essential. Although commercial desulfurization process called liquid scrubbing is effective for removal of H$_2$S, it has drawbacks, the loss of sensible heat of the gas and costly wastewater treatment. Many investigations are carried out about high-temperature removal ol H$_2$S in hot coal-derived gas using metal oxide or mixed metal qxide sorbents. It was reported that ZnO was very effective sorbent for H2S removal, but it has big flaw to vaporize elemental zinc above 600\ulcorner \ulcorner As alternative, metal oxides such as CaO, $Fe_2O_3$, TiO$_2$ and CuO were added to ZnO. Especially, different results are reported for $Fe_2O_3$ additive. Tamhankar et al. reported SiO$_2$ with 45 wt% $Fe_2O_3$ sorbent is favorable for removal of H$_2$S and regeneration.

  • PDF

Influence of gate insulator treatment on Zinc Oxide thin film transistors.

  • Kim, Gyeong-Taek;Park, Jong-Wan;Mun, Yeon-Geon;Kim, Ung-Seon;Sin, Sae-Yeong
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2010.05a
    • /
    • pp.54.2-54.2
    • /
    • 2010
  • 최근까지는 주로 비정질 실리콘이 디스플레이의 채널층으로 상용화 되어왔다. 비정질 실리콘 기반의 박막 트랜지스터는 제작의 경제성 및 균일성을 가지고 있어서 널리 상용화되고 있다. 하지만 비정질 실리콘의 구조적인 문제인 낮은 전자 이동도(< $1\;cm^2/Vs$)로 인하여 디스플레이의 대면적화에 부적합하며, 광학적으로 불투명한 특성을 갖기 때문에 차세대 디스플레이의 응용에 불리한 점이 있다. 이런 문제점의 대안으로 현재 국내외 여러 연구 그룹에서 산화물 기반의 반도체를 박막 트랜지스터의 채널층으로 사용하려는 연구가 진행중이다. 산화물 기반의 반도체는 밴드갭이 넓어서 광학적으로 투명하고, 상온에서 증착이 가능하며, 비정질 실리콘에 비해 월등히 우수한 이동도를 가짐으로 디스플레이의 대면적화에 유리하다. 특히 Zinc Oxide의 경우, band gap이 3.4eV로써, transparent conductors, varistors, surface acoustic waves, gas sensors, piezoelectric transducers 그리고 UV detectors 등의 많은 응용에 쓰이고 있다. 또한, a-Si TFTs에 비해 ZnO-based TFTs의 경우 우수한 소자 성능과 신뢰성을 나타내며, 대면적 제조시 우수한 균일성 및 낮은 생산비용이 장점이다. 그러나 ZnO-baesd TFTs의 경우 일정한 bias 아래에서 threshold voltage가 이동하는 문제점이 displays의 소자로 적용하는데 매우 중요하고 문제점으로 여겨진다. 특히 gate insulator와 channel layer사이의 interface에서의 defect에 의한 charge trapping이 이러한 문제점들을 야기한다고 보고되어진다. 본 연구에서는 Zinc Oxide 기반의 박막 트랜지스터를 DC magnetron sputtering을 이용하여 상온에서 제작을 하였다. 또한, $Si_3N_4$ 기판 위에 electron cyclotron resonance (ECR) $O_2$ plasma 처리와 plasma-enhanced chemical vapor deposition (PECVD)를 통하여 $SiO_2$ 를 10nm 증착을 하여 interface의 개선을 시도하였다. 그리고 TFTs 소자의 출력 특성 및 전이 특성을 평가를 하였고, 소자의 field effect mobility의 값이 향상을 하였다. 또한 Temperature, Bias Temperature stability의 조건에서 안정성을 평가를 하였다. 이러한 interface treatment는 안정성의 향상을 시킴으로써 대면적 디스플레의 적용에 비정질 실리콘을 대체할 유력한 물질이라고 생각된다.

  • PDF

Manufacture and characteristic evaluation of Amorphous Indium-Gallium-Zinc-Oxide (IGZO) Thin Film Transistors

  • Seong, Sang-Yun;Han, Eon-Bin;Kim, Se-Yun;Jo, Gwang-Min;Kim, Jeong-Ju;Lee, Jun-Hyeong;Heo, Yeong-U
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.166-166
    • /
    • 2010
  • Recently, TFTs based on amorphous oxide semiconductors (AOSs) such as ZnO, InZnO, ZnSnO, GaZnO, TiOx, InGaZnO(IGZO), SnGaZnO, etc. have been attracting a grate deal of attention as potential alternatives to existing TFT technology to meet emerging technological demands where Si-based or organic electronics cannot provide a solution. Since, in 2003, Masuda et al. and Nomura et al. have reported on transparent TFTs using ZnO and IGZO as active layers, respectively, much efforts have been devoted to develop oxide TFTs using aforementioned amorphous oxide semiconductors as their active layers. In this thesis, I report on the performance of thin-film transistors using amorphous indium gallium zinc oxides for an active channel layer at room temperature. $SiO_2$ was employed as the gate dielectric oxide. The amorphous indium gallium zinc oxides were deposited by RF magnetron sputtering. The carrier concentration of amorphous indium gallium zinc oxide was controlled by oxygen pressure in the sputtering ambient. Devices are realized that display a threshold voltage of 1.5V and an on/off ration of > $10^9$ operated as an n-type enhancement mode with saturation mobility with $9.06\;cm^2/V{\cdot}s$. The devices show optical transmittance above 80% in the visible range. In conclusion, the fabrication and characterization of thin-film transistors using amorphous indium gallium zinc oxides for an active channel layer were reported. The operation of the devices was an n-type enhancement mode with good saturation characteristics.

  • PDF

SAW Filter Made of ZnO/Nanocrystalline Diamond Thin Films (ZnO/나노결정다이아몬드 적층 박막 SAW 필터)

  • Jung, Doo-Young;Kang, Chan-Hyoung
    • Journal of the Korean institute of surface engineering
    • /
    • v.42 no.5
    • /
    • pp.216-219
    • /
    • 2009
  • A surface acoustic wave (SAW) filter structure was fabricated employing $4{\mu}m$ thick nanocrystalline diamond (NCD) and $2.2{\mu}m$ thick ZnO films on Si wafer. The NCD film was deposited in an $Ar/CH_4$ gas mixture by microwave plasma chemical vapor deposition method. The ZnO film was formed over the NCD film in an RF magnetron sputter using ZnO target and $Ar/O_2$ gas. On the top of the two layers, copper film was deposited by the RF sputter and inter digital transducer (IDT) electrode pattern (line/space : $1.5/1.5{\mu}m$) was defined by the photolithography including a lift-off etching process. The fabricated SAW filter exhibited the center frequency of 1.66 GHz and the phase velocity of 9,960 m/s, which demonstrated that a giga Hertz SAW filter can be realized by utilizing the nanocrystalline diamond thin film.