• Title/Summary/Keyword: ZnS: Cu

Search Result 1,084, Processing Time 0.025 seconds

A Study of Nutritional Intakes, Food Preference and Blood Composition in Female College Students with Premenstrual Syndrome (월경전증후군 여대생의 영양소 섭취량 및 식품선호도와 혈액성상 조사)

  • Kim, Ju-Youn;Ahn, Hong-Seok
    • Korean Journal of Community Nutrition
    • /
    • v.13 no.4
    • /
    • pp.565-572
    • /
    • 2008
  • This study was performed to investigate nutritional intakes and preference food and blood composition of female college students of premenstrual syndrome. Based on physical measurement test results, both groups showed no noticeable difference and both groups were within the normal range according to body composition analysis. In terms of nutrients consumption, results showed nutritional intakes more than EAR(estimated average requirements) included phosphorus>vitamin $B_6$>vitamin $B_1$, while nutritional intakes less than EAR were vitamin A>vitamin $B_6$>calcium>folic acid. A significant difference was observed for vitamin C intake(p<0.05). The overall mean values of basic blood(WBC, RBC, Hct, and Hb), sex hormone(Estrogen, Progesterone), aldosterone, cortisol, Cu, Zn, and Ca, Mg indices in female college students were within the normal range and there was no significant difference between the PMS group and the Normal group. In conclusion, vitamin C intake of the PMS group showed a level of 84.8% EAR. Therefore vitamin C supplement can be beneficial to relieve the PMS Syndrome.

Toxic Trace and Earth Crustal Elements of Ambient PM2.5 Using CCT-ICP-MS in an Urban Area of Korea

  • Lee, Jin-Hong;Jeong, Jin-Hee;Lim, Joung-Myung
    • Environmental Engineering Research
    • /
    • v.18 no.1
    • /
    • pp.3-8
    • /
    • 2013
  • Collision cell technology-inductively coupled plasma-mass spectrometry (CCT-ICP-MS) was used to measure the concentrations of approximately 19 elements associated with airborne PM2.5 samples that were collected from a roadside sampling station in Daejeon, Korea. Standard reference material (SRM 2783, air particulate on filter media) of the National Institute of Standards and Technology was used for the quality assurance of CCT-ICP-MS. The elemental concentrations were compared statistically with the certified (or recommended) values. The patterns of distribution were clearly distinguished between elements with their concentrations ranging over four orders of magnitude. If compared in terms of enrichment factors, it was found that toxic trace elements (e.g., Sb, Se, Cd, As, Zn, Pb, and Cu) of anthropogenic origin are much more enriched in PM2.5 samples of the study site. To the contrary, the results of the correlation analysis showed that PM2.5 concentrations can exhibit more enhanced correlations with the elements (e.g., Fe, K, Si, and Ti) arising from earth's crust. The findings of strong correlations between PM2.5 and the elements of crustal origin may be directly comparable with the dominant role of those species by constituting a major fraction of even PM2.5 as well as PM10 at the roadside area.

Synthesis and Properties of Rhodamine Dye Sensor Material toward detection Response (진단감응 로다민 색소센서재료 합성 및 특성 분석)

  • Kim, Hyung-Joo;Lee, Do-Hyun;Son, Young-A
    • Proceedings of the Korean Society of Dyers and Finishers Conference
    • /
    • 2011.11a
    • /
    • pp.34-34
    • /
    • 2011
  • Recently, people have concerned about environmental pollution. This environmental pollution occur due to many reasons such as heavy metal ions and anions. In this regard, many researchers have studied organic materials to monitor above reasons to protect environmental pollution. One of the organic materials for this function is chemosensor. This chemosensor has been studied and reported about monitoring toxic heavy metal ions and anions. In this study, the dye sensor was designed and synthesized through reaction of Rhodamine 6G and 1,3-Indanedion. this dye sensor selective detected $Hg^{2+}$ metal ions while showing red color absorption and yellowish-green strong fluorescence emission compared to other heavy metal ions such as $Cu^{2+}$, $Hg^{2+}$, $Ag^{2+}$, $Zn^{2+}$, $Fe^{2+}$ and $Fe^{3+}$. In this regard, we anticipated that this dye senosr can provide an significant material for monitoring mercury which cause environmental pollution. Thus, We investigated detailed properties of this dye sesnor with using UV-Vis absorption and fluorescent spectrophotometer, Job's plot method for metal binding complex, computational simulated calculation named Material Studio 4.3 suite to approach for electron distribution and HOMO/LUMO.

  • PDF

Solidification and Stabilization of Metal(loid)s-contaminated Soils using Single Binders (단일 고형화제를 이용한 중금속류 오염 토양의 고형화/안정화)

  • Park, Hye Ok;Choi, Jiyeon;Oh, Sanghwa;Shin, Won Sik
    • Journal of Soil and Groundwater Environment
    • /
    • v.20 no.7
    • /
    • pp.135-147
    • /
    • 2015
  • Remediation of metal(loid)s-contaminated sites is crucial to protect human and ecosystem. Solidification and stabilization of metal(loid)s by the binder amendment is one of the cost-effective technologies. In this study, metal (loid)s in various field-contaminated soils obtained from steel-making, metal refinery and mining tillage were immobilized by the application of single binders such as diammonium phosphate (DAP), lime, and ladle slag. The efficiency of solidification and stabilization was evaluated by Toxicity Characteristic Leaching Procedure (TCLP) and the Standard, Measurements and Testing programme of European Union (SM&T) extraction processes. In terms of TCLP extraction, the binder was effective in order of lime > DAP > ladle slag. All binders were highly effective in the immobilization of Pb, Zn, Cu, Ni, and Cd. The increased immobilization efficiency is attributed to the increase in the Step III and IV fractions of the SM&T extraction. Lime and ladle slag were highly effective in the immobilization of the metal(loid)s, however, As release increased with DAP due to competition between the phosphate originated from DAP and arsenate. A further study is needed for the better immobilization of multi metal(loid)s using binary binders.

Transition Characteristics and Risk Assessment of Heavy Metal(loid)s in Barley (Hordeum vulgare L.) Grown at the Major Producing Districts in Korea

  • Kim, Da-Young;Kim, Won-Il;Yoo, Ji-Hyock;Kwon, Oh-Kyung;Cho, Il Kyu
    • Korean Journal of Environmental Agriculture
    • /
    • v.40 no.1
    • /
    • pp.60-66
    • /
    • 2021
  • BACKGROUND: The concern over heavy metal(loid)s in arable land and agricultural products increases for public health in recent years. This study aims to identify transition characteristics of heavy metal(loid)s and to assess dietary risk in barley grown at the major producing districts in Korea. METHODS AND RESULTS: The soil and barley samples were collected from 38 locations around the major producing districts at Jeollabuk-do in Korea for the propose of examining the concentrations of heavy metal(loid)s. The 34 barley samples were separately purchased on the market for the same survey. The average concentration and range of arsenic (As), cadmium (Cd) and lead (Pb) in barley grown at the major producing districts in Korea were 0.037 (0.016-0.094), 0.028 (0.004-0.083) and 0.137 (0.107-0.212) mg kg-1, respectively. Currently, the maximum allowable level for barley Pb is set at 0.2 mg kg-1 in Korea, and the monitoring results suggested that some samples exceeded the maximum allowable level and required appropriate farming management. Bio-concentration factor values by heavy metal(loid)s in barley were high at Cd, copper (Cu) and zinc (Zn), similar to other crops, while As and Pb were low, indicating low transferability. CONCLUSION: Human exposure to As, Cd and Pb through dietary intake of barley might not cause adverse health effects due to relatively low concentrations, although the Pb in some barley was detected higher than the maximum allowable level. Further study on uptake and accumulation mechanism of Pb by barley might be required to assess the human health risk associated with soil contamination.

Electrochemical Determination of Ag(I) Ion at Chemically Modified Carbon-Paste Electrode Containing 1,5,9,13-Tetrathiacyclohexadecane (1,5,9,13-Tetrathiacyclohexadecane 수식전극을 사용한 Ag(I)의 전기화학적 정량)

  • Ha, Kwang Soo;Jang, Mi-Kyeong;Seo, Moo Lyong
    • Analytical Science and Technology
    • /
    • v.10 no.3
    • /
    • pp.187-195
    • /
    • 1997
  • Chemically modified electrodes(CMEs) for Ag(I) were constructed by incoporating 1,5,9,13-tetrathiacyclohexadecane([16]-ane-$S_4$) with a conventional carbon-paste mixture composed of graphite powder and nujol oil. Ag(I) ion was chemically deposited onto the surface of the modified electrode with [16]-ane-$S_4$ by immersion of the electrode in the acetate buffer solution(pH=4.5) containing $5.0{\times}10^{-4}M$ Ag(I) ion. And then the electrode deposited with Ag(I) was reduced at -0.3V vs. S.C.E. Well-defined stripping voltammetric peaks could be obtained by scanning the potential to the positive direction. The CME surface was regenerated with exposure to 0.1M $HNO_3$ solution and was reused for the determination of Ag(I) ion. When deposition/measurement/regeneration cycles were 10 times, the response could be reproduced with relative standard deviation of 6.08%. In case of differential pulse stripping voltammetry, the calibration curve for Ag(I) was linear over the range of $5.0{\times}10^{-7}{\sim}1.5{\times}10^{-6}M$. And the detection limit was $2.0{\times}10^{-7}M$. Various ions such as Cd(II), Ni(II), Pb(II), Zn(II), Mn(II), Mg(II), EDTA, and oxalate(II) did not influence the determination of Ag(I) ion, except Cu(II) ion.

  • PDF

Production of Xylooligo-Saccharides and Purification of Extracellular Xylanase from Streptomyces chibaensis J-59 (방선균 Streptomyces chibaensis J-59 Xylanase의 정제 및 자일로 올리고당(Xylooligo-Saccharides)의 생산)

  • Joo, Gil-Jae;Rhee, In-Koo
    • Current Research on Agriculture and Life Sciences
    • /
    • v.14
    • /
    • pp.111-122
    • /
    • 1996
  • S. chibaensis J-59 produced an extracellular xylanase in a CSL medium composed of 1.5% com steep liquor, 0.1% $MgSO_4{\cdot}7H_2O$, 0.012% $CoCl_2{\cdot}6H_2O$, and 0.15% glucose containing xylan. but it did not produce in the culture medium containing xylose. The production of enzyme reached to a maximum level (0.83 uints/ml) when bacteria were cultured in 2.5 l jar fermentor for 48hrs at $30^{\circ}C$ and pH 7.0. Furthermore, S. chibaensis J-59 produced an intracellular glucose isomerase in a medium containing xylan and/or xylose. Xylanase was purified 29-fold over the culture supernatants of S. chibaensis J-59 by ammonium sulfate fractionation, chromatography on DEAE-Sephadex A-50, and gel filtration on Sephadex G-200. The purified enzyme is a monomeric enzyme with a native molecular mass of 25 kDa and a subunit molecular mass of 25 kDa. The purified enzyme requires $Mg^{2+}$ for activity, $Ca^{2+}$, $Co^{2+}$ is not an inhibitor but inhibit by $Fe^{3+}$, $Hg^{2+}$, and $Cu^{2+}$, sodium dodecyl sulfate, N-bromosuccinide. Pattern of hydrolysis demonstrated that the xylanase was an endo-splitting enzyme able to break down birchwood xylan at random giving xylobiose, xylotriose and xylotetrose as the main end products.

  • PDF

Chemical Characterization and Antibacterial Effect of Volatile Flavor Concentrate from Houttyunia cordata Thunb (어성초의 화학적 특성과 휘발성 향기성분 추출물의 항균효과)

  • Shin Sung-Euy;Suh Doo-Suk;Ding Jilu;Cha Wol-Suk
    • Journal of Life Science
    • /
    • v.16 no.2 s.75
    • /
    • pp.297-301
    • /
    • 2006
  • For developing natural antibacterial agents from Houttuynia cordata Thunb., antibacterial effects of volatile flavor component using various bacterial sp. were tested. Extraction from Houttuynia cordata Thunb. by using SDE (Simultaneous steam Distillation-Extraction) showed strong antibacterial activities against Vibrio and Bacillus genus, such as Vibrio. cholerae, V. parahaemolyticus, V. vulnificus, Bacillus. cereus, and B. subtilis. Then chemical compositions of leaf and stem were analyzed. The contents of crude protein, lipid, and ash in stem were less than those of leaf, but fiber contents were higher than those of leaf. Among the amino acids, aspartic acid, glutamic acid, glycine, and arginine were higher than those of other amino acids. Linolenic acid, linoleic acid, oleic acid, and palmitic acid were major fatty acids. Major minerals of Houttuynia cordata Thunb. were potassium, calcium, phosphorus, magnesium, iron, zinc, and copper. Especially, in the case of potassium, it was highest.

A Study on Chemical Composition of Fine Particles in the Sungdong Area, Seoul, Korea (서울 성동구 지역 미세먼지의 화학적 조성에 관한 연구)

  • 조용성;이홍석;김윤신;이종태;박진수
    • Journal of Environmental Science International
    • /
    • v.12 no.6
    • /
    • pp.665-676
    • /
    • 2003
  • To investigate the chemical characteristics of PM$\_$2.5/ in Seoul, Korea, atmospheric particulate matters were collected using a PM$\_$10/ dichotomous sampler including PM$\_$10/ and PM$\_$2.5/ inlet during the period of October 2000 to September 2001. The Inductively Coupled Plasma-Mass Spectromety (ICP-MS), ion Chromatography (IC) methods were used to determine the concentration of both metal and ionic species. A statistical analysis was performed for the heavy metals data set using a principal component analysis (PCA) to derived important factors inherent in the interactions among the variables. The mean concentrations of ambient PM$\_$2.5/ and PM/sub10/ were 24.47 and 45.27 $\mu\textrm{g}$/㎥, respectively. PM$\_$2.5/ masses also showed temporal variations both yearly and seasonally. The ratios of PM$\_$2.5/PM$\_$10/ was 0.54, which similar to the value of 0.60 in North America. Soil-related chemical components (such as Al, Ca, Fe, Si, and Mn) were abundant in PM$\_$10/, while anthropogenic components (such as As, Cd, Cr, V, Zn and Pb) were abundant in PM2s. Total water soluble ions constituted 30∼50 % of PM$\_$2.5/ mass, and sulfate, nitrate and ammonium were main components in water soluble ions. Reactive farms of NH$_4$$\^$+/were considered as NH$_4$NO$_3$ and (NH$_4$)$_2$SO$_4$ during the sampling periods. In the results of PCA for PM$\_$2.5/, we identified three principal components. Major contribution to PM$\_$2.5/ seemed to be soil, oil combustion, unidentified source. Further study, the detailed interpretation of these data will need efforts in order to identify emission sources.

Effect of SipJeonDaeBo-Decoction on Target Organ Metal Level in Rats (십전대보탕을 투여한 흰쥐의 중요장기중 금속농도변화에 대한 연구)

  • Yoon Seong-Wook;Lee Sun-Dong
    • Journal of Society of Preventive Korean Medicine
    • /
    • v.4 no.1
    • /
    • pp.51-69
    • /
    • 2000
  • This dissertation was to research how some metal level within SipJeonDaeBo - Decoction, one of oriental prescriptions, influence Sprague-Dawley animals. 1. Under the experiment with drinking waters there was no metal ${\sim}0.65\;mg/L$ detected. A metal with feed found 0.001-376.983mg/kg. 2. In the mice's kidney, brain, bones used experiment, As searched 0.474 mg/kg, 0.486 mg/kg, 0.314 mg/kg 0.834 mg/kg respectively ; Cd 0.060 mg/kg, 0.045 mg/kg, 0.030 mg/kg, 0.353 mg/kg, ; Co 0.105 mg/kg, 0.063 mg/kg, 0.030 mg/kg, 0.399 mg/kg, ; Cr 0.292 mg/kg, 0.304 mg/kg, 0.234 mg/kg, 0.962 mg/kg, ; Cu 4.201 mg/kg, 3.759 mg/kg, 1.923 mg/kg, 0.484 mg/kg, ; Fe 57.535 mg/kg, 150.571 mg/kg, 17.178 mg/kg, 281.506 mg/kg, ; no Hg, Mn 0.612 mg/kg, 2.968 mg/kg, 0.528 mg/kg, 4.205 mg/kg, ; Ni 0.094 mg/kg, 0.072 mg/kg, 0.078 mg/kg, 27.714 mg/kg, ; Pb 0.269 mg/kg, 0.293 mg/kg, 0.283 mg/kg, 43.142 mg/kg ; Zn 4.149 mg/kg, 21.861 mg/kg, 8.088 mg/kg, 226.283 mg/kg respectively. 3. In level of hazardous metal within idney control group searched 0.194 {\pm}\; 0.052 mg/kg, experimental I g개up $0.189{\pm}0.036\;mg/kg$, experimental I group $0.264 {\pm}{\pm}\;0.179\;mg/kg$. In level of non hazardous metal control group searched $15.917{\pm}5.575\;mg/kg$, experiment I group $17.064{\pm}2.246\;mg/kg$, experiment II group $16.892{\pm}3.586\;mg/kg$. Besides in total level of metal control g.cup detected $6.484{\pm}2.258\;mg/kg$, experiment I group $6.940{\pm}0.914\;mg/kg$, experiment II group $6.915{\pm} 1.508\;mg/kg$ There all was no statistical significance. 4. In level of hazardous metal within the liver control group searched $0.187{\pm}0.048\;mg/kg$, experiment I g개up $0.168[\pm}0.079\;mg/kg$, experiment II group $0.277{\pm}0.159\;mg/kg$. In level of non hazardous heavy metal control group detected $44.925{\pm}18.468\;mg/kg$, experiment I group $39.917{\pm}12.772\;mg/kg$, experiment II group $49.525{\pm}33.484\;mg/kg$. Besides in total concentration control group searched $18.082{\pm}7.395\;mg/kg$, experiment I group $16.068{\pm}5.128\;mg/kg$, experiment II group $19.977{\pm}13.443\;mg/kg$. There was no statistical significance but hazardous metal gets more level in the experilnent group than in the control group. 5. In level of hazardous metal within brain control group searched $0.145{\pm}0.056\;mg/kg$, experiment I group $$0.167{\pm}0.030\;mg/kg, erperiment II group $0.172{\pm}0.123\;mg/kg$. In level of non hazardous heavy metal control group detected $6.488{\pm}0.965\;mg/kg$, experiment I group $7.290{\pm}0.588\;mg/kg$, experiment II group $7.010{\pm}1.627\;mg/kg$. Besides in total concentration control group searched $2.683{\pm}7.395\;mg/kg$, experiment I group $3.017{\pm}0.238\;mg/kg$, experiment II group $2.908 {\pm} 0.711\;mg/kg$. Therefore there was no statistical significance. 6. In level of hazardous metal within bone control group searched $8.172{\pm}5.195 \;mg/kg$, experiment I group $9.128{\pm}4.143\;mg/kg$, experiment II group $9.401{\pm}6.924\;mg/kg$. There is statistical significance(p<0.05). In level of non hazardous metal control group detected $94.065{\pm}36.035\;mg/kg$, experiment I group $147.563 {\pm}79.939\;mg/kg$, experiment II group $142.730{\pm}77.374\;mg/kg$. Besides in total level control group searched $48.530{\pm}16.523\;mg/kg$, experiment I group $64.502{\pm}31.078\;mg/kg$, experiment II group $62.733 {\pm}34.641\;mg/kg$. Therefore there was no statistical significance. 7 In the correlative research as to how each metal influences to ingestion Cd and Co searched 0.954 and Pb and Ni -0.0884 from kidney. Co and Cd was 0.995 and Zn and As -0.190 from liver. Co and Cd were 0.995 and Zn and Cu -0.393 from brain. Co and Cd were 0.998 and Zn and Mn -0.206 from bones

  • PDF