• 제목/요약/키워드: ZnO-based TFT

검색결과 44건 처리시간 0.029초

ZnO-based thin-film transistor inverters using top and bottom gate structures

  • Oh, Min-Suk;Kim, Yong-Hoon;Park, Sung-Kyu;Han, Jeong-In;Lee, Ki-Moon;Im, Seong-Il;Lee, Byoung-H.;Sung, Myung-M.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2009년도 9th International Meeting on Information Display
    • /
    • pp.461-463
    • /
    • 2009
  • We report on the fabrication of ZnO-based thin-film transistor (TFT) inverters with top and bottom gate structures with $Al_2O_3$ dielectrics grown by atomic layer deposition (ALD). Since the top gate ZnO-based TFT showed somewhat lower field effect mobility than that of the bottom gate device, our ZnO-based TFT inverters were designed with identical dimensions for both channels. This TFT inverter device demonstrated an high voltage gain at a low supply voltage of 5 V and clear dynamic behavior.

  • PDF

Annealing effects on the characteristics of Sputtered ZnO films for ZnO-based thin-film transistors

  • Park, Yong-Seob;Kim, Han-Ki
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2010년도 제39회 하계학술대회 초록집
    • /
    • pp.112-112
    • /
    • 2010
  • Zinc Oxide (ZnO) thin-films were deposited according to the magnetron sputtering method. The deposited ZnO films were annealed with RTA equipment at various annealing temperatures in an vacuum ambient. The influence of the annealing temperature on the structural, electrical, and optical properties of the ZnO films was experimentally investigated, and the effect of conductivity of the ZnO active layer on the device performance of the oxide-TFT was tested. As a result, an increase of the annealing temperature was attributed to improvements of crystallinity in ZnO films. The grain size was found to lead to an increase of conductivity in the ZnO films. Fabricated ZnO TFTs with annealed ZnO active layer provided good performance in the TFT devices. Consequently, the performance of the TFT was determined by the conductivity of the ZnO film, which was related to the structural properties of the ZnO film.

  • PDF

Effects of Hf addition in thin-film-transistors using Hf-Zn-O channel layers deposited by atomic layer deposition

  • 김소희;안철현;조형균
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2013년도 춘계학술대회 논문집
    • /
    • pp.138-139
    • /
    • 2013
  • 본 연구는 ZnO-TFT 소자에 Hf의 첨가에 따른 소자 특성 및 게이트 바이어스 스트레스에 대한 특성에 대해 분석을 하였다. Hf-Zn-O 박막은 Hf의 조성이 증가함에 따라 작아지는 grain size로 인해 TFT 소자의 전계효과 이동도와 게이트 바이어스 스트레스에서의 문턱전압의 변화가 더 커지는 것을 확인하였다. 한편, Hf이 14at% 함유된 HZO-TFT에서는 이동도는 현저히 저하되었지만, 게이트 바이어스 스트레스에서의 문턱전압의 변화가 현저히 개선되는 것을 확인하였는데, 이는 Hf의 조성이 증가함에 따라 비정질화 되어 grain boundaries에 의한 trap의 영향이 줄어든 결과를 확인하였다. 또한, 전계효과 이동도와 소자의 안정성을 확보하기 위해, poly-ZnO와 amorphous-HZO로 구성된 다중층 채널 구조를 이용한 TFT소자에서는 전계효과 이동도과 소자의 안정성이 개선된 결과를 보였다. 이는 채널과 게이트 산화물의 interface charge trap의 감소와 back-channel effect가 감소한 결과임을 확인하였다.

  • PDF

Investigation of the ZnO based TFT interface properties with synchrotron radiation analysis

  • Choi, Jong-Kwon;Baik, Min-Kyung;Joo, Min-Ho;Park, Kyu-Ho;Lee, Jay-Man;Kim, Myung-Seop;Yang, Joong-Hwan
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2007년도 7th International Meeting on Information Display 제7권2호
    • /
    • pp.1298-1300
    • /
    • 2007
  • The interface between SiNx and ZnO was investigated with Near Edge X-ray Absorption Fine Structure (NEXAFS) for ZnO based thin film transistor (TFT) applications. Impurity species were interstitial $N_2$ molecules at the SiNx / ZnO interface. The evolution of $N_2$ is decreased with increasing of anneal temperature.

  • PDF

Dry Etching Behaviors of ZnO and $Al_2O_3$ Films in the Fabrication of Transparent Oxide TFT for AMOLED Display Application

  • Yoon, S.M.;Hwang, C.S.;Park, S.H.;Chu, H.Y.;Cho, K.I.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2007년도 7th International Meeting on Information Display 제7권2호
    • /
    • pp.1273-1276
    • /
    • 2007
  • We provide a newly developed dry etching process for the fabrication of ZnO-based oxide TFTs. The etching characteristics of ZnO (active layer) and $Al_2O_3$ (gate insulator) thin films were systematically investigated when the etching gas mixtures and their mixing ratios were varied in the heliconplasma etching system.

  • PDF

Threshold voltage control in dual gate ZnO-based thin film transistors

  • Park, Chan-Ho;Lee, Ki-Moon;Lee, Kwang-H.;Lee, Byoung-H.;Sung, Myung-M.;Im, Seong-Il
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2009년도 9th International Meeting on Information Display
    • /
    • pp.527-530
    • /
    • 2009
  • We report on the fabrication of ZnO-based dual gate (DG) thin-film transistors (TFTs) with 20 nm-thick $Al_2O_3$ for both top and bottom dielectrics, which were deposited by atomic layer deposition on glass substrates at $200^{\circ}C$. Whether top or bottom gate is biased for sweep, our TFT almost symmetrically operates under a low voltage of 5 V showing a field mobility of ~0.4 $cm^2/V{\cdot}s$ along with the on/off ratio of $5{\times}10^4$. The threshold voltage of our DG TFT was systematically controlled from 0.5 to 2.0 V by varying counter gate input from +5 to -2 V.

  • PDF

Electrically Stable Transparent Complementary Inverter with Organic-inorganic Nano-hybrid Dielectrics

  • Oh, Min-Suk;Lee, Ki-Moon;Lee, Kwang-H.;Cha, Sung-Hoon;Lee, Byoung-H.;Sung, Myung-M.;Im, Seong-Il
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2008년도 International Meeting on Information Display
    • /
    • pp.620-621
    • /
    • 2008
  • Transparent electronics has been one of the key terminologies forecasting the ubiquitous technology era. Several researchers have thus extensively developed transparent oxide-based thin-film transistors (TFTs) on glass and plastic substrates although in general high voltage operating devices have been mainly studied considering transparent display drivers. However, low voltage operating oxide TFTs with transparent electrodes are very necessary if we are aiming at logic circuit applications, for which transparent complementary or one-type channel inverters are required. The most effective and low power consuming inverter should be a form of complementary p-channel and n-channel transistors but real application of those complementary TFT inverters also requires electrical- and even photo-stabilities. Since p-type oxide TFTs have not been developed yet, we previously adopted organic pentacene TFTs for the p-channel while ZnO TFTs were chosen for n-channel on sputter-deposited $AlO_x$ film. As a result, decent inverting behavior was achieved but some electrical gate instability was unavoidable at the ZnO/$AlO_x$ channel interface. Here, considering such gate instability issues we have designed a unique transparent complementary TFT (CTFTs) inverter structure with top n-ZnO channel and bottom p-pentacene channel based on 12 nm-thin nano-oxide/self assembled monolayer laminated dielectric, which has a large dielectric strength comparable to that of thin film amorphous $Al_2O_3$. Our transparent CTFT inverter well operate under 3 V, demonstrating a maximum voltage gain of ~20, good electrical and even photoelectric stabilities. The device transmittance was over 60 % and this type of transparent inverter has never been reported, to the best of our limited knowledge.

  • PDF

Flexible Display용 Low Temp Process를 이용한 ZnO TFT의 제작 및 특성 평가 (Fabrication and Characteristics of ZnO TFTs for Flexible Display using Low Temp Process)

  • 김영수;강민호;남동호;최광일;이희덕;이가원
    • 한국전기전자재료학회논문지
    • /
    • 제22권10호
    • /
    • pp.821-825
    • /
    • 2009
  • Recently, transparent ZnO-based TFTs have attracted much attention for flexible displays because they can be fabricated on plastic substrates at low temperature. We report the fabrication and characteristics of ZnO TFTs having different channel thicknesses deposited at low temperature. The ZnO films were deposited as active channel layer on $Si_3N_4/Ti/SiO_2/p-Si$ substrates by RF magnetron sputtering at $100^{\circ}C$ without additional annealing. Also, the ZnO thin films deposited at oxygen partial pressures of 40%. ZnO TFTs using a bottom-gate configuration were investigated. The $Si_3N_4$ film was deposited as gate insulator by PE-CVD at $150^{\circ}C$. All Processes were processed below $150^{\circ}C$ which is optimal temperature for flexible display and were used dry etching method. The fabricated devices have different threshold slop, field effect mobility and subthreshold slop according to channel thickness. This characteristics are related with ZnO crystal properties analyzed with XRD and SPM. Electrical characteristics of 60 nm ZnO TFT (W/L = $20\;{\mu}m/20\;{\mu}m$) exhibited a field-effect mobility of $0.26\;cm^2/Vs$, a threshold voltage of 8.3 V, a subthreshold slop of 2.2 V/decade, and a $I_{ON/OFF}$ ratio of $7.5\times10^2$.

Hafnium doping effect in a zinc oxide channel layer for improving the bias stability of oxide thin film transistors

  • Moon, Yeon-Keon;Kim, Woong-Sun;Lee, Sih;Kang, Byung-Woo;Kim, Kyung-Taek;Shin, Se-Young;Park, Jong-Wan
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제40회 동계학술대회 초록집
    • /
    • pp.252-253
    • /
    • 2011
  • ZnO-based thin film transistors (TFTs) are of great interest for application in next generation flat panel displays. Most research has been based on amorphous indium-gallium-zinc-oxide (IGZO) TFTs, rather than single binary oxides, such as ZnO, due to the reproducibility, uniformity, and surface smoothness of the IGZO active channel layer. However, recently, intrinsic ZnO-TFTs have been investigated, and TFT- arrayss have been demonstrated as prototypes of flat-panel displays and electronic circuits. However, ZnO thin films have some significant problems for application as an active channel layer of TFTs; it was easy to change the electrical properties of the i-ZnO thin films under external conditions. The variable electrical properties lead to unstable TFTs device characteristics under bias stress and/or temperature. In order to obtain higher performance and more stable ZnO-based TFTs, HZO thin film was used as an active channel layer. It was expected that HZO-TFTs would have more stable electrical characteristics under gate bias stress conditions because the binding energy of Hf-O is greater than that of Zn-O. For deposition of HZO thin films, Hf would be substituted with Zn, and then Hf could be suppressed to generate oxygen vacancies. In this study, the fabrication of the oxide-based TFTs with HZO active channel layer was reported with excellent stability. Application of HZO thin films as an active channel layer improved the TFT device performance and bias stability, as compared to i-ZnO TFTs. The excellent negative bias temperature stress (NBTS) stability of the device was analyzed using the HZO and i-ZnO TFTs transfer curves acquired at a high temperature (473 K).

  • PDF

Flexible Display용 Low Temp Process를 이용한 ZnO TFT의 제작 및 특성 평가 (Fabrication and Characteristics of ZnO TFTs for Flexible Display using Low Temp Process)

  • 김영수;강민호;남동호;최광일;오재섭;송명호;이희덕;이가원
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2009년도 하계학술대회 논문집
    • /
    • pp.44-44
    • /
    • 2009
  • Recently, transparent ZnO-based TFTs have attracted much attention for flexible displays because they can be fabricated on plastic substrates at low temperature. We report the fabrication and characteristics of ZnO channel layers(ZnO TFTs) having different channel thicknesses. The ZnO film were deposited as active channel layers on $Si_3N_4/Ti/SiO_2p$-Si substrates by rf magnetron sputtering at $100\;^{\circ}C$ without additional annealing. Also the Zno thin films deposited at oxygen partial pressures of 40%. ZnO TFTs using a bottom-gate configuration were investigated. The $Si_3N_4$ film were deposited as gate insulator by PE-CVD at $15\;^{\circ}C$. All Processes were processed below $150^{\circ}C$ which is optimal temperature for flexible display and were used dry etching method.

  • PDF