• Title/Summary/Keyword: ZnO thin films

Search Result 1,119, Processing Time 0.042 seconds

Improvement of the characteristics of ZnO thin films using ZnO buffer layer (ZnO 저온 성장 버퍼에 의한 ZnO 박막의 특성 향상)

  • Pang, Seong-Sik;Kang, Jeong-Seok;Kang, Hong-Seong;Shim, Eun-Sub;Lee, Sang-Yeol
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.04b
    • /
    • pp.65-68
    • /
    • 2002
  • The effect of low-temperature ZnO buffer layer has been investigated for the optical properties of ZnO thin films. ZnO buffers and thin films have been deposited using the pulsed laser deposition technique. ZnO buffer layers were grown at $200^{\circ}C$ with various thickness of 0 to 60 nm, followed by raising the substrate temperature to $400^{\circ}C$ to grow $2{\mu}m$ ZnO thin films. The buffer layers could relax stresses induced by the lattice mismatch and different thermal expansion coefficients between ZnO thin films and sapphire substrate. In order to identify the optical properties of ZnO thin films, PL measurement was used. From the results of PL measurement, all the fabricated ZnO thin films with buffer layers have shown intensive UV emission with a narrow linewidth. ZnO thin films with buffer layer of 20 nm have shown the strongest UV emission. It was found that the use of ZnO buffer layer plays an important role to improve the intensive UV emission of the ZnO thin films.

  • PDF

Growth of ZnO Thin films Depending on the Substrates by RF Sputtering and Analysis of Their Microstructures (기판의 결정구조에 따른 RF 스퍼터링 ZnO 박막의 성장과 미세구조 분석)

  • Yoo In-Sung;So Soon-Jin;Park Choon-Bae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.5
    • /
    • pp.461-466
    • /
    • 2006
  • To investigate the ZnO thin films which are interested in the next generation of short wavelength LEDs and Lasers, the ZnO thin films were deposited by RF sputtering system. At sputtering process of ZnO thin films, substrate temperature, work pressure respectively is $100^{\circ}C$ and 15 mTorr, and the purity of target is ZnO 5 N. The ZnO thin films were in-situ annealed at $600^{\circ}C$ in $O_2$ atmosphere. The thickness of ZnO thin films has implemented about $1.6{\mu}m$ at SEM analysis after in-situ annealing process. We have investigated the crystal structure of substrates, and so structural properties of ZnO thin films has estimate by using XRD, FWHM, FE-SEM and AFM. XRD and FE-SEM showed that ZnO thin films grown on substrates had a c-axis preferential orientation in the [0001] crystal direction. XPS spectra showed that ZnO thin film was showed a peak positions corresponding to the O1s and the Zn2p. As form above XPS, we showed that the atom ratio of Zn:O related 1:1.1504 on ZnO thin film, so we could obtained useful information for p-type ZnO thin film.

Characteristics Investigation of ZnO-Si-ZnO Multi-layer Thin Films Fabricated by Pulsed Laser Deposition (펄스 레이저 증착법에 의해 제작된 ZnO-Si-ZnO 다층 박막의 특성 연구)

  • 강홍성;강정석;심은섭;방성식;이상렬
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.1
    • /
    • pp.65-69
    • /
    • 2003
  • ZnO-Si-ZnO multi-layer thin films have been deposited by pulsed laser deposition (PLD). And then, the films have been annealed at 300$^{\circ}C$ in oxygen ambient pressure. Peak positions of ultraviolet (UV) and visible region were changed by addition of Si layer. Mobility of the films was improved slightly than ZnO thin film without Si layer. The structural property changed by inserting intermediate Si layer in ZnO thin film. The optical properties and structural properties of ZnO-Si-ZnO multi-layer thin films were characterized by PL(Photoluminescence) and XRB(X-ray diffraction) method, respectively. Electrical properties were measured by van der Pauw Hall measurements

The Microstructures and Electrical Properties of ZnO/Sapphire Thin Films Doped by P and As based on Ampouele-tube Method (Ampoule-tube 법으로 P와 As을 도핑한 ZnO/Sapphire 박막의 미세구조와 전기적 특성)

  • Yoo, In-Sung;Jin, Eun-Mi;So, Byung-Moon;Park, Choon-Bae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.120-121
    • /
    • 2006
  • To investigate the ZnO thin films which are interested in the next generation of short wavelength LEDs and Lasers, the ZnO thin films were deposited by RF magnetron sputtering system. Al sputtering process of ZnO thin films substrate temperature, work pressure respectively is $100^{\circ}C$ and 15 mTorr, and the purity of target is ZnO 5N. The ZnO thin films were in-situ annealed at $600^{\circ}C$, $800^{\circ}C$ in $O_2$ atmosphere. Phosphorus (P) and arsenic (As) were diffused into ZnO thin films sputtered by RF magnetron sputtering system in ampoule tube which was below $5{\times}10^{-7}$ Torr. The dopant sources of phosphorus and arsenic were $Zn_3P_2$ and $ZnAS_2$. Those diffusion was perform at $650^{\circ}C$ during 3hr. We confirmed that p-type properties of ZnO thin films were concerned with dopant sources rather than diffusion temperature.

  • PDF

Effect of ZnO buffer layer on the property of ZnO thin film on $Al_{2}O_{3}$ substrate (사파이어 기판 위에 증착된 ZnO 박막 특성에 대한 ZnO 버퍼층의 영향)

  • Kim, Jae-Won;Kang, Jeong-Seok;Kang, Hong-Seong;Lee, Sang-Yeol
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.04a
    • /
    • pp.140-142
    • /
    • 2003
  • ZnO thin films are demanded for device applications, so ZnO buffer layer was used to improve for good properties of ZnO thin film. In this study, the structural, electrical and optical properties of ZnO thin films deposited with various buffer thickness was investigated by X-ray diffraction (XRD), Hall measurements, Photoluminescence(PL). ZnO buffer layer and ZnO thin films on sapphire($Al_{2}O_{3}$) substrate have been deposited $200^{\circ}C$ and $400^{\circ}C$ respectively by pulsed laser deposition. It is observed the variety of lattice constant of ZnO thin film by (101) peak position shift with various buffer thickness. It is founded that ZnO thin film with buffer thickness of 20 nm was larger resistivity of 200 factor and UV/visible of 2.5 factor than that of ZnO thin films without buffer layer. ZnO thin films with buffer thickness of 20 nm have shown the most properties.

  • PDF

Microstructure of ZnO Thin Films Deposited by PECVD using Diethylzine (Diethylzinc를 사용하여 PECVD로 증착한 ZnO 박막의 미세 구조 분석)

  • 김영진;김형준
    • Korean Journal of Crystallography
    • /
    • v.4 no.2
    • /
    • pp.92-99
    • /
    • 1993
  • ZnO thin films were depositsd by Plasma enhanced CVD (PUW) using Diethylzinc and N2O gas, and micro-structue of ZnO thin films were investigated ZnO thin films composed of micro-crystallites was deposited at the substrate of loot. However, highly c-axis oriented ZnO thin films were deposited on the glass substrates above 200℃. TEM analysis revealed that an epitaxial (002) ZnO thin film was deposited on c-plane sapphire substrate at the substrate temperature of 350℃, and More patterns showing partial dislocation were observed at the grain boundary.

  • PDF

Analysis of the Structural Properties for ZnO/Sapphire(0001) Thin Films by In-situ Atmosphere Annealing (In-situ 분위기 Annealing에 따른 ZnO/Sapphire(0001) 박막의 구조적 특성 분석)

  • Wang Min-Sung;Yoo In-Sung;Park Choon-Bae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.8
    • /
    • pp.769-774
    • /
    • 2006
  • In this paper the ZnO thin films, which has used spotlight of next generation short wavelength LEDs and semiconductor laser were deposited based on RF magnetron sputtering is described. The temperature at substrate and work pressure, which has implemented in sputtering process of ZnO thin films were settle down at $100^{\circ}C$ and 15 mTorr respectively. The ZnO 5N has used target. The thickness of ZnO thin films was about $1.6{\mu}m$ which was measured by SEM analysis after the sputtering process. Structural properties of ZnO thin films by in-situ and atmosphere annealing were analyzed by XRD. Transformation of grain size and surface roughness were observed by AFM. XPS spectra showed that ZnO thin film had a peak positions corresponding to the $Zn_{2p}$ and the $O_{1s}$. As form above XPS, we confirmed that post-annealing condition changed the atom ratio of Zn/O and microstructure in ZnO thin films.

Alanysis of the Optical Properties of p-type ZnO Thin Films Doped by P based on Ampouele-tube Method (Ampoule-tube 법으로 Phosphorus를 도핑한 P형 ZnO 박막의 광학적 특성 분석)

  • Yoo, In-Sung;Oh, Sang-Hyun;So, Soon-Jin;Park, Choon-Bae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.145-146
    • /
    • 2006
  • The most Important research topic in the development of ZnO LED and LD is the production of p-type ZnO thin film that has minimal stress with outstanding stoichiometric ratio. In this study, Phosphorus diffused into the undoped ZnO thin films using the ampoule-tube method for the production of p-type znO thin films. The undoped ZnO thin films were deposited by RF magnetron sputtering system on $GaAs_{0.6}P_{0.4}$/GaP and Si wafers. 4N Phosphorus (P) was diffused into the undoped ZnO thin films in ampoule-tube which was performed and $630^{\circ}C$ during 3hr. We found the diffusion condition of the conductive ZnO films which had p-type properties with the highest mobility of above 532 $cm^2$/Vs compared with other studies PL spectra measured at 10K for the purpose of analyzing optical properties of p-type ZnO thin film showed strong PL intensity in the UV emission band around 365nm ~ 415nm and 365nm ~ 385nm.

  • PDF

Influence of Oxygen Partial Pressure on ZnO Thin Films for Thin Film Transistors

  • Kim, Jae-Won;Kim, Ji-Hong;Roh, Ji-Hyoung;Lee, Kyung-Joo;Moon, Sung-Joon;Do, Kang-Min;Park, Jae-Ho;Jo, Seul-Ki;Shin, Ju-Hong;Yer, In-Hyung;Koo, Sang-Mo;Moon, Byung-Moo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.106-106
    • /
    • 2011
  • Recently, zinc oxide (ZnO) thin films have attracted great attention as a promising candidate for various electronic applications such as transparent electrodes, thin film transistors, and optoelectronic devices. ZnO thin films have a wide band gap energy of 3.37 eV and transparency in visible region. Moreover, ZnO thin films can be deposited in a poly-crystalline form even at room temperature, extending the choice of substrates including even plastics. Therefore, it is possible to realize thin film transistors by using ZnO thin films as the active channel layer. In this work, we investigated influence of oxygen partial pressure on ZnO thin films and fabricated ZnO-based thin film transistors. ZnO thin films were deposited on glass substrates by using a pulsed laser deposition technique in various oxygen partial pressures from 20 to 100 mTorr at room temperature. X-ray diffraction (XRD), transmission line method (TLM), and UV-Vis spectroscopy were employed to study the structural, electrical, and optical properties of the ZnO thin films. As a result, 80 mTorr was optimal condition for active layer of thin film transistors, since the active layer of thin film transistors needs high resistivity to achieve low off-current and high on-off ratio. The fabricated ZnO-based thin film transistors operated in the enhancement mode with high field effect mobility and low threshold voltage.

  • PDF

Characterization and deposition of ZnO thin films by Reactive Magnetron Sputtering using Inductively-Coupled Plasma (ICP) (유도결합형 플라즈마를 사용한 반응성 마그네트론 스퍼터링에 의한 ZnO 박막 증착 및 특성분석)

  • Kim, Dong-Sun
    • Journal of the Semiconductor & Display Technology
    • /
    • v.10 no.2
    • /
    • pp.83-89
    • /
    • 2011
  • In this study, we investigated the effects of shutter control by Reactive Magnetron Sputtering using Inductively-Coupled Plasma(ICP) for obtaining ZnO thin films with high purity. The surface morphologies and structure of deposited ZnO thin films were characterized using Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM) and X-ray Diffractometer (XRD). Also, optical and chemical properties of ZnO thin films were analyzed by Spectroscopic Ellipsometer (SE) and X-ray Photoelectron spectroscopy (XPS). As a result, it observed that ZnO thin films grown at reactive sputtering using shutter control and ICP were higher density, lower surface roughness, better crystallinity than other conventional sputtering deposition methods. For obtaining better quality deposition ZnO thin films, we will investigate the effects of substrate temperature and RF power on shutter control by a reactive magnetron sputtering using inductively-coupled plasma.