• Title/Summary/Keyword: ZnO powder

Search Result 340, Processing Time 0.03 seconds

Ga2O3 나노 밤송이의 제조 및 특성 분석

  • Park, Sin-Yeong;Gang, Hyeon-Cheol
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.423-423
    • /
    • 2012
  • ZnO, SnO2, In2O3:Sn와 같은 투명하고 전도성이 있는 박막은 panel display, 전자발광소자, 박막트랜지스터, 태양전지 등의 전극물질로서 폭넓게 사용되고 있다. 이러한 전극 물질을 이용하는 광전자소자의 성능을 개선하기 위해서는 가시광선영역에서 광투과율이 높고, 전기전도도가 좋아야 한다. 최근 ZnO, SnO2, In2O3, MgO, Ga2O3 등으로 이루어진 3원 또는 다원화합물로 제조된 산화물 박막이 새로운 투명한 전도성 박막으로 많은 관심을 끌고 있다. 본 연구에서는 Ga2O3 박막을 radio-frequency magnetron sputtering 방법을 이용하여 증착하였다. 기존에 사용되던 ceramic target을 개선하여 powder target을 사용하였다. 반응가스는 순수하게 Ar 가스만 사용하였고, Sapphire(0001) 기판을 사용하였다. 초기에는 flat한 layered 구조로 증착이 이루어졌으나, 증착시간이 20분이 지나면서부터는 밤송이 모양을 가지는 나노구조체가 생성되기 시작하였고, 이후 나노 밤송이의 밀도가 점차 증가하였다. Ga2O3 나노 밤송이의 특성에 대하여 발표할 예정이다.

  • PDF

The Characteristic Changes of Amorphous-InGaZnO Thin Film according to RF Power (RF Power에 따른 Amorphous-InGaZnO 박막의 특성 변화)

  • Kim, Sang-Hun;Park, Yong-Heon;Kim, Hong-Bae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.4
    • /
    • pp.293-297
    • /
    • 2010
  • We have studied the optical and electrical properties of a-IGZO thin films on the n-type semiconductor fabricated by RF magnetron sputtering method. The ceramic target was used in which $In_2O_3$, $Ga_2O_3$ and ZnO powder were mixed with 1:1:2 mol% ratio and furnished. The RF power was set at 25 W, 50 W, 75 W and 100 W as a variable process condition. The transmittance of the films in the visible range was above 80%, and it was 92% in the case of 25 W power. AFM analysis showed that the roughness increased as increasing RF power, and XRD showed amorphous structure of the films without any peak. The films are electrically characterized by high mobility above 10 $cm^2/V{\cdot}s$ at low RF power, high carrier concentration and low resistivity. It is required to study further finding the optimal process condition such as lowering the RF power, prolonging the deposition ratio and qualification analysis.

Effect of ZnS:Mn, Dy Yellow Phosphor on White LEDs Characteristics (백색 LED의 특성에 대한 ZnS:Mn, Dy 황색 형광체의 영향)

  • Shin, Deuck-Jin;Yu, Il
    • Korean Journal of Materials Research
    • /
    • v.21 no.6
    • /
    • pp.295-298
    • /
    • 2011
  • ZnS:Mn, Dy yellow phosphors for White Light Emitting Diode were synthesized by a solid state reaction method using ZnS, $MnSO_4{\cdot}5H_2O$, S and $DyCl_3{\cdot}6H_2O$ powders as starting materials. The mixed powder was sintered at $1000^{\circ}C$ for 4 h in an air atmosphere. The photoluminescence of the ZnS:Mn, Dy phosphors showed spectra extending from 480 to 700 nm, peaking at 580 nm. The photoluminescence of 580 nm in the ZnS:Mn, Dy phosphors was associated with $^4T_1{\rightarrow}^6A_1$ transition of $Mn^{2+}$ ions. The highest photoluminescence intensity of the ZnS:Mn, Dy phosphors under 450 nm excitation was observed at 4 mol% Dy doping. The enhanced photoluminescence intensity of the ZnS:Mn, Dy phosphors was explained by energy transfer from $Dy^{3+}$ to $Mn^{2+}$. The CIE coordinate of the 4 mol% Dy doped ZnS:Mn, Dy was X = 0.5221, Y = 0.4763. The optimum mixing conditions for White Light Emitting Diode was obtained at the ratio of epoxy : yellow phosphor = 1:2 form CIE coordinate.

The Structural and Electrical Properties of Li doped ZnO Thin Films (Li이 도핑된 ZnO 박막의 구조적 및 전기적 특성)

  • You, Gyeon-Gue;Kwon, Dae-Hyuk;Jun, Choon-Bae;Kim, Jeong-Gyoo;Park, Ki-Cheol
    • Journal of Sensor Science and Technology
    • /
    • v.9 no.2
    • /
    • pp.146-152
    • /
    • 2000
  • Lithium doped zinc oxide(ZnO:Li) films are prepared by rf magnetron sputtering on Corning 7059 glass substrate using specifically designed ZnO targets containing different amount of $Li_2CO_3$ powder as the Li doping source. The structural properties of the Li doped ZnO films are investigated by XRD, SEM and AFM. The electrical properties of the ZnO:Li films are measured for various deposition conditions, such as the substrate temperature, $O_2$/Ar gas ratio and rf power. The effects of the $Li_2CO_3$ content in target and the deposition conditions on the structural and electrical properties were studied. When ZnO:Li films were sputtered at the substrate temperature of $200^{\circ}C$, $O_2$/Ar gas ratio of 100% and rf power of 100W with a target containing less than 1wt% content of $Li_2CO_3$, showed good surface morphology, strong c-axis orientation and high resistivity of more than $10^8{\Omega}cm$.

  • PDF

Top-emission Electroluminescent Devices based on Ga-doped ZnO Electrodes (Ga-doped ZnO 투명전극을 적용한 교류무기전계발광소자 특성 연구)

  • Lee, Wun Ho;Jang, Won Tae;Kim, Jong Su;Lee, Sang Nam
    • Journal of the Semiconductor & Display Technology
    • /
    • v.16 no.2
    • /
    • pp.44-48
    • /
    • 2017
  • We explain optical and electrical properties of top and bottom-emission structured alternating-current powder electroluminescent devices (ACPELDs) with Ga-doped ZnO(GZO) transparent electrode. The top-emission ACPELDs were layered as the metal electrode/dielectric layer/emission layer/top transparent electrode and the bottom-emission ACPELDs were structured as the bottom transparent electrode/emission layer/dielectric layer/metal electrode. The yellow-emitting ZnS:Mn, Cu phosphor and the barium titanate dielectric layers were layered through the screen printing method. The GZO transparent electrode was deposited by the sputtering, its sheet resistivity is $275{\Omega}/{\Box}$. The transparency at the yellow EL peak was 98 % for GZO. Regardless of EL structures, EL spectra of ACPELDs were exponentially increased with increasing voltages and they were linearly increased with increasing frequencies. It suggests that the EL mechanism was attributed to the impact ionization by charges injected from the interface between emitting phosphor layer and the transparent electrode. The top-emission structure obtained higher EL intensity than the bottom-structure. In addition, charge densities for sinusoidal applied voltages were measured through Sawyer-Tower method.

  • PDF

Structural and Magnetic Properties of Z-type Barium Ferrite (Z-type 바리움 페라이트의 구조 및 자기적 성질)

  • Nam, In Tak
    • Journal of Industrial Technology
    • /
    • v.28 no.A
    • /
    • pp.119-123
    • /
    • 2008
  • Structural and magnetic properties of $CO_{1-x}Zn_xZ$ ($Ba_3Co_{1-x}Zn_xFe_{24}O_{41}$) hexa-ferrite are studied using XRD, VSM and SEM, respectively. Powder was prepared from co-precipitation and firstly heat treated at $1350^{\circ}C$ for 6 hours in $O_2$ atmosphere. Second heat treatment was performed at 900, 1000, $1100^{\circ}C$ for 6 hours in air, respectively. Saturation magnetization value of first heat treated powder is acceptable and coercivity is high for applying to device. These result may be originated from incomplete formation reaction from M and Y phases to Z phase. Second heat treatment leads to small value of coercivity.

  • PDF

The preparation of Zinc-Silicate phosphors by noble technique (분무열분해 전구체를 사용한 규산아연 형광물질의 합성에 관한 연구)

  • 김영일;이경희
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.8 no.2
    • /
    • pp.370-376
    • /
    • 1998
  • The powder preparation of Zinc-Silicate phosphors compound was studied by hydrothermal reaction starting from the precursor which prepared by spray pyrolysis method. This process protect including of impuritied from crushing process and Mineralizing in hydrothermal reactions. Using spray pyrolysis precursor, ${\alpha}-Zn_2SiO_4$ powder was prepared by the hydrothermal reaction under $250^{\circ}C$.

  • PDF

Effect of metals(Cd & Zn) and its nitrogen compounds on growth of bacteria isolated from the three tributaries and lower reach(Mulgum) of the Nakdong River (낙동강 하류(물금)와 세 지류에서 분리된 우점 세균의 증식에 미치는 금속(Cd & Zn) 및 그 질소 화합물의 영향)

  • Park, Jae-Rim;Son, Yeon-Ju;Ha, Kyung;Park, Joong-Chul
    • Journal of Environmental Science International
    • /
    • v.11 no.3
    • /
    • pp.183-189
    • /
    • 2002
  • Investigation was carried out to observe the dominant bacteria and the effect of metals(Cd & Zn) and its nitrate compound on growth of bacteria isolated from the three tributaries and lower reach of the Nakdong River. Mean CFU(log$_{10}$) level was highest in Kumho River(8.30 CFU), Nam River, Hwang River, and Mulgum followed. Staphylococcus xylosus, Staph. lentus, Pasteurella pneumotropica, Aeromonas hydrophilla were dominant species in each study site. Cadmium powder and Zinc powder showed strong effect to inhibit the growth of Micrococcus spp., Pasteurella pneumotropica, Aeromonas hydrophilla. But, nitrate compounds of Cd and Zn(Cd(NO$_3$)$_2$4$H_2O$, Zn(NO$_3$)$_2$6$H_2O$) did not clearly show the strong effect to inhibit the growth of dominants.s.

Effect of Zine Oxide Size and Oxygen Pressure on the Magnetic Properties of (Ni, Zn) Ferrite Powders Prepared by Self-propagating High Temperature Synthesis (ZnO의 입도와 산소압이 고온연소합성법으로 제조된 Ni-Zn Ferrite 분말의 자기적 특성에 미치는 영향)

  • Choi, Yong;Cho, Nam-Ihn;Hahn, Y.D.
    • Journal of the Korean Magnetics Society
    • /
    • v.9 no.2
    • /
    • pp.78-84
    • /
    • 1999
  • $(Ni, Zn)Fe_2O_4$ powders were prepared through self-propagating high temperature synthesis reaction and the effects of initial zinc oxide powder size and oxygen pressure on the magnetic properties of the final combustion products were studied. The ferrite powders were combustion synthesized with iron, iron oxide, nickel oxide, and zinc oxide powders under various oxygen pressures of 0.5~10 atmosphere after blended in n-hexane solution for 5 minutes with a spex mill, followed by dried at 120 $^{\circ}C$ in vacuum for 24 hours. The maximum combustion temperature and propagating rate were about 1250 $^{\circ}C$ and 9.8 mm/sec under the tap density, which were decreased with decreasing ZnO size and oxygen pressure. The final product had porous microstructure with spinel peaks in X-ray spectra. As the ZnO particle size in the reactant powders and oxygen pressure during the combustion reaction increase, coercive force, maximum magnetization, residual magnetization, squareness ratio were changed from 1324 Oe, 43.88 emu/g, 1.27 emu/g, 0.00034 emu/gOe, 37.8$^{\circ}C$ to 11.83 Oe, 68.87 emu/g, 1.23 emu/g, 0.00280 emu/gOe, 43.9 $^{\circ}C$ and 7.99 Oe, 75.84 emu/g, 0.791 emu/g, 0.001937 emu/gOe, 53.8 $^{\circ}C$ respectively. Considering the apparent activation energy changes with oxygen pressure, the combustion reaction significantly depended on initial oxygen pressure and ZnO particle size.

  • PDF

Energy Band Structure and Photocatalytic Property of Fe-doped Zn2TiO4 Material

  • Jang, Jum-Suk;Borse, Pramod H.;Lee, Jae-Sung;Lim, Kwon-Taek;Jung, Ok-Sang;Jeong, Euh-Duck;Bae, Jong-Seong;Won, Mi-Sook;Kim, Hyun-Gyu
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.12
    • /
    • pp.3021-3024
    • /
    • 2009
  • $Zn_2Ti_{1-x}Fe_xO_4\;(0\;{\leq}\;x\;{\leq}\;0.7)$ photocatalysts were synthesized by polymerized complex (PC) method and investigated for its physico-chemical as well as optical properties. $Zn_2Ti_{1-x}Fe_xO_4$ can absorb not only UV light but also visible light region due to doping of Fe in the Ti site of $Zn_2TiO_4$ lattice because of the band transition from Fe 3d to the Fe 3d + Ti3d hybrid orbital. The photocatalytic activity of Fe doped $Zn_2TiO_4$ samples for hydrogen production under UV light irradiation decreased with an increase in Fe concentration in $Zn_2TiO_4$. Consequently, there exists an optimized concentration of iron for improved photocatalytic activity under visible light (${\lambda}{\leq}$420 nm)