• 제목/요약/키워드: ZnO nanofiber

검색결과 18건 처리시간 0.026초

염료감응형 태양전지의 저비용 상대전극을 위한 N-doped ZnO 나노입자-탄소나노섬유 복합체 (N-Doped ZnO Nanoparticle-Carbon Nanofiber Composites for Use as Low-Cost Counter Electrode in Dye-Sensitized Solar Cells)

  • 안하림;안효진
    • 한국재료학회지
    • /
    • 제24권10호
    • /
    • pp.565-571
    • /
    • 2014
  • Nitrogen-doped ZnO nanoparticle-carbon nanofiber composites were prepared using electrospinning. As the relative amounts of N-doped ZnO nanoparticles in the composites were controlled to levels of 3.4, 9.6, and 13.8 wt%, the morphological, structural, and chemical properties of the composites were characterized by means of field-emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). In particular, the carbon nanofiber composites containing 13.8 wt% N-doped ZnO nanoparticles exhibited superior catalytic properties, making them suitable for use as counter electrodes in dye-sensitized solar cells (DSSCs). This result can be attributed to the enhanced surface roughness of the composites, which offers sites for $I_3{^-}$ ion reductions and the formation of Zn3N2 phases that facilitate electron transfer. Therefore, DSSCs fabricated with 13.8 wt% N-doped ZnO nanoparticle-carbon nanofiber composites showed high current density ($16.3mA/cm^2$), high fill factor (57.8%), and excellent power-conversion efficiency (6.69%); at the same time, these DSSCs displayed power-conversion efficiency almost identical to that of DSSCs fabricated with a pure Pt counter electrode (6.57%).

전기방사와 수열합성법으로 제작한 광전화학셀 전극용 나노 계층형 아연산화물 구조 연구 (ZnO Hierarchical Nanostructures Fabricated by Electrospinning and Hydrothermal Methods for Photoelectrochemical Cell Electrodes)

  • 이환표;정혁;김옥길;김효진;김도진
    • 한국재료학회지
    • /
    • 제23권11호
    • /
    • pp.655-660
    • /
    • 2013
  • Photoelectrochemical cells have been used in photolysis of water to generate hydrogen as a clean energy source. A high efficiency electrode for photoelectrochemical cell systems was realized using a ZnO hierarchical nanostructure. A ZnO nanofiber mat structure was fabricated by electrospinning of Zn solution on the substrate, followed by oxidation; on this substrate, hydrothermal synthesis of ZnO nanorods on the ZnO nanofibers was carried out to form a ZnO hierarchical structure. The thickness of the nanofiber mat and the thermal annealing temperature were determined as the parameters for optimization. The morphology of the structures was examined by field-emission scanning electron microscopy, transmission electron microscopy, and X-ray diffraction. The performance of the ZnO nanofiber mat and the potential of the ZnO hierarchical structures as photoelectrochemical cell electrodes were evaluated by measurement of the photoelectron conversion efficiencies under UV light. The highest photoconversion efficiency observed was 63 % with a ZnO hierarchical structure annealed at $400^{\circ}C$ in air. The morphology and the crystalline quality of the electrode materials greatly influenced the electrode performance. Therefore, the combination of the two fabrication methods, electrospinning and hydrothermal synthesis, was successfully applied to fabricate a high performance photoelectrochemical cell electrode.

Electrospun Nanocomposite Fiber Mats of Zinc-Oxide Loaded Polyacrylonitrile

  • Nataraj, S.K.;Kim, B.H.;Yun, J.H.;Lee, D.H.;Aminabhavi, T.M.;Yang, K.S.
    • Carbon letters
    • /
    • 제9권2호
    • /
    • pp.108-114
    • /
    • 2008
  • We have demonstrated the feasibility of using electrospinning method to fabricate long and continuous composite nanofiber sheets of polyacrylonitrile (PAN) incorporated with zinc oxide (ZnO). Such PAN/ZnO composite nanofiber sheets represent an important step toward utilizing carbon nanofibers (CNFs) as materials to achieve remarkably enhanced physico-chemical properties. In an attempt to derive these advantages, we have used a variety of techniques such as field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM) and high resolution X-ray diffraction (HR-XRD) to obtain quantitative data on the materials. The CNFs produced are in the diameter range of 100 to 350 nm after carbonization at $1000^{\circ}C$. Electrical conductivity of the random CNFs was increased by increasing the concentration of ZnO. A dramatic improvement in porosity and specific surface area of the CNFs was a clear evidence of the novelty of the method used. This study indicated that the optimal ZnO concentration of 3 wt% is enough to produce CNFs having enhanced electrical and physico-chemical properties.

ZnO와 TiO2 함유 복합나노섬유의 제조와 유해물질분해 성능 평가 (Fabrication of ZnO and TiO2 Nanocomposite Fibers and Their Photocatalytic Decomposition of Harmful Gases)

  • 허윤선;이승신
    • 한국의류학회지
    • /
    • 제35권11호
    • /
    • pp.1297-1308
    • /
    • 2011
  • This research investigates the application of ZnO (zinc oxide) nanoparticles and $TiO_2$ (titanium dioxide) nanoparticles to polypropylene nonwoven fabrics via an electrospinning technique for the development of textile materials that can decompose harmful gases. To fabricate uniform ZnO nanocomposite fibers, two types of ZnO nanoparticles were applied. Colloidal $TiO_2$ nanoparticles were chosen to fabricate $TiO_2$ nano- composite fibers. ZnO/poly(vinyl alcohol) (PVA) and $TiO_2$/PVA nanocomposite fibers were electrospun under a variety of conditions that include various feed rates, electric voltages, and capillary diameters. The morphology of electrospun nanocomposite fibers was examined with a field-emission scanning electron micro- scope and a transmission electron microscope. Decomposition efficiency of gaseous materials (formaldehyde, ammonia, toluene, benzene, nitrogen dioxide, sulfur dioxide) by nanocomposite fiber webs with 3wt% nano-particles (ZnO or $TiO_2$) and 7$g/m^2$ web area density was assessed. This study shows that ZnO nanoparticles in colloid were more suitable for fabricating nanocomposite fibers in which nanoparticles are evenly dispersed than in powder. A heat treatment was applied to water-soluble PVA nanofiber webs in order to stabilize the electrospun nanocomposite fibrous structure against dissolution in water. ZnO/PVA and $TiO_2$/PVA nanofiber webs exhibited a range of degradation efficiency for different types of gases. For nitrogen dioxide, the degradation efficiency was 92.2% for ZnO nanocomposite fiber web and 87% for $TiO_2$ nanocomposite fiber web after 20 hours of UV light irradiation. The results indicate that ZnO/PVA and $TiO_2$/PVA nano- composite fiber webs have possible uses in functional textiles that can decompose harmful gases.

전기방사로 합성된 산화아연 나노섬유의 Glucose 감응특성 (Glucose Sensing Properties of Electrospinning-Synthesized ZnO Nanofibers)

  • 최종명;변준혁;김상섭
    • 한국재료학회지
    • /
    • 제25권12호
    • /
    • pp.655-658
    • /
    • 2015
  • The development of glucose biosensors has been attracting much attention because of their importance in monitoring glucose in the human body; such sensors are used to diagnose diabetes and related human diseases. Thanks to the high selectivity, sensitivity to glucose detection, and relatively low-cost fabrication of enzyme-immobilized electrochemical glucose sensors, these devices are recognized as one of the most intensively investigated glucose sensor types. In this work, ZnO nanofibers were synthesized using an electrospinning method with polyvinyl alcohol zinc acetate as precursor material. Using the synthesized ZnO nanofibers, we fabricated glucose biosensors in which glucose oxidase was immobilized on the ZnO nanofibers. The sensors were used to detect a wide range of glucose from 10 to 700 M with a sensitivity of $10.01nA/cm^2-{\mu}M$, indicating that the ZnO nanofiber-based glucose sensor can be used for the detection of glucose in the human body. The control of nanograins in terms of the size and crystalline quality of the individual nanofibers is required for improving the glucose-sensing abilities of the nanofibers.

산화아연 나노섬유 기반 콜레스테롤 센서의 제작과 성능 (Fabrication and Sensing Capability of Cholesterol Sensors Based on ZnO Nanofibers)

  • 조소연;김지영;김상섭
    • 한국재료학회지
    • /
    • 제23권5호
    • /
    • pp.281-285
    • /
    • 2013
  • In the present work, ZnO nanofibers were applied to electrode materials for the detection of cholesterol. ZnO nanofibers were synthesized using the electrospinning technique with zinc acetate as a precursor. Electrospinning-synthesized ZnO nanofibers were uniformly distributed by properly controlling the electrospinning parameters. After the calcination treatment, nanofibers of pure ZnO phase were synthesized. Then, these fibers were successfully placed on Au-coated glass substrates by dispersion of ZnO nanofibers in ethanol, dropping, and drying, in sequence. Cholesterol oxidase was then immobilized onto the surface of the ZnO nanofibers. To enhance the immobilization, Nafion was additionally applied. The sensing performances of the fabricated ZnO nanofibers-based sensors were analyzed by cyclic voltammetry in terms of cholesterol concentration ranging from 100 to 400 mg/dl. In the I-V curves, measured by cyclic voltammetry, the ZnO nanofiber-based sensor showed a proportional current behavior with cholesterol concentrations in phosphate buffered saline solution. The sensitivity was measured and found to be $30.7nA/mM{\cdot}cm^2$, which is comparable to the values reported in the literature. After not only optimizing the shape of the ZnO nanofibers but also improving the adhesion nature between the ZnO nanofibers and the Au conducting layer, these fibers can be a good candidate for electrode materials in devices used to detect low concentrations of cholesterol in blood.

Semiconducting ZnO Nanofibers as Gas Sensors and Gas Response Improvement by $SnO_2$ Coating

  • Moon, Jae-Hyun;Park, Jin-Ah;Lee, Su-Jae;Zyung, Tae-Hyoung
    • ETRI Journal
    • /
    • 제31권6호
    • /
    • pp.636-641
    • /
    • 2009
  • ZnO nanofibers were electro-spun from a solution containing poly 4-vinyl phenol and Zn acetate dihydrate. The calcination process of the ZnO/PVP composite nanofibers brought forth a random network of polycrystalline wurtzite ZnO nanofibers of 30 nm to 70 nm in diameter. The electrical properties of the ZnO nanofibers were governed by the grain boundaries. To investigate possible applications of the ZnO nanofibers, their CO and $NO_2$ gas sensing responses are demonstrated. In particular, the $SnO_2$-deposited ZnO nanofibers exhibit a remarkable gas sensing response to $NO_2$ gas as low as 400 ppb. Oxide nanofibers emerge as a new proposition for oxide-based gas sensors.

계층적 구조를 갖는 중공형 ZnCo2O4 나노 섬유의 리튬이온배터리 음극소재 적용 (Application of Hierarchical ZnCo2O4 Hollow Nanofibers for Anode Materials in Lithium-ion Batteries)

  • 정순영;조중상
    • Korean Chemical Engineering Research
    • /
    • 제57권4호
    • /
    • pp.559-564
    • /
    • 2019
  • 본 연구는 계층적 구조를 갖는 중공형 $ZnCo_2O_4$ 나노 섬유를 전기방사공정 및 후 열처리 공정을 통해 합성했다. 용액에 polystyrene (PS) 나노비드를 첨가하여 방사된 섬유는 열처리 과정을 통해 PS가 제거됨으로써 구조체 내 기공이 균일하게 생성되었으며 이는 구조체 내로 열 전달 및 가스의 침투를 원활히 함으로써 계층적 구조를 갖는 중공형 $ZnCo_2O_4$ 나노 섬유가 합성될 수 있었다. 계층적 구조를 갖는 중공형 $ZnCo_2O_4$ 나노 섬유를 리튬 이차전지의 음극활물질로 적용한 결과, $1.0A\;g^{-1}$의 높은 전류밀도에도 불구하고 300 사이클 동안 $815mA\;h\;g^{-1}$ ($646mA\;h\;cm^{-3}$)의 높은 가역 용량을 유지했다. 반면 $ZnCo_2O_4$ 나노 분말은 300 사이클 후 $487mA\;h\;g^{-1}$ ($450mA\;h\;cm^{-3}$)의 방전 용량을 나타냈다. 계층적 구조를 갖는 중공형 $ZnCo_2O_4$ 나노 섬유의 우수한 리튬 저장 특성은 중공 구조 및 섬유 표면을 구성하는 $ZnCo_2O_4$ 나노결정에 기인한 결과이다. 본 연구에서 제안한 계층적 구조를 갖는 중공형 나노 섬유 구조체는 다양한 금속 산화물로 확장 적용이 가능하며 에너지 저장 분야를 포함한 여러 분야에 응용 가능하다.

전기방사를 이용한 Al이 첨가된 ZnO 나노섬유의 제조 및 광학 특성평가 (Optical properties of Al doped ZnO Nanofibers Prepared by electrospinning)

  • 송찬근;윤종원
    • 한국결정성장학회지
    • /
    • 제21권5호
    • /
    • pp.205-209
    • /
    • 2011
  • ZnO는 반도전성과 초전도성을 나타내며 광학적으로도 독특한 재료로 가스센서, 태양전지, 광학도파관 등 여러 방면에 널리 활용되고 있다. 본 논문에서는 이러한 ZnO에 Al을 첨가함에 따라 광학적 특성에 어떠한 영향을 미치는지 알아보기 위하여 ZnO에 Al 첨가량 변화에 따른 나노구조체를 제작하여 특성을 비교하였다. ZnO 용액은 PVP, ethanol, zinc acetate를 이용하여 Sol의 형태로 제작하였으며, Al첨가용액을 넣어 Al이 첨가된 ZnO Sol을 제작하였다. 제작된 Sol을 전기 방사법을 이용하여 나노구조체를 제조하였다. 제조된 섬유들을 각각 300, 500, $700^{\circ}C$로 열처리 한 후 나노 구조체를 XRD, XPS, SEM을 이용하여 분석하였다. 또한 TGA, DSC를 이용하여 온도변화에 따른 질량 및 열량의 변화를 측정하였다. UVvis를 이용하여 ZnO와 Al이 첨가된 ZnO의 흡광도를 측정 비교하였다.