• Title/Summary/Keyword: ZnO gas sensor

Search Result 125, Processing Time 0.022 seconds

플렉서블 가스 센서 응용을 위한 화학기상증착법 기반 MoO3 박막 합성

  • Son, Ju-Hyeon;An, Chi-Seong;Kim, Hyeong-U;Park, Gi-Beom;Kim, Gi-Jung;Sin, Hye-Ji;Kim, Tae-Seong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.247.2-247.2
    • /
    • 2016
  • 산업 발달에 따라 여러 유해 가스들의 양이 많아지고 그 종류가 다양해지고 있다. 이에 따라 가스센서의 필요성도 더욱 증가 하였고, 이러한 변화에 대응하기 위해 기존 가스 센서로 이용되던 $SnO_2$나 ZnO보다 더 나은 화학정 안정성과 내구성을 얻고자 2D $MoO_3$ 박막의 대면적 합성을 연구를 진행하였다. 기존 $MoO_3$ 합성에 사용되던 Pyrolysis 방식이 아닌, 플라즈마 화학기상증착법(PECVD)을 이용해 공정과정을 단순화시켜 센서 수율 증대를 목표로 하였다. E-beam avaporator을 이용해 Mo 금속 박막을 $SnO_2$ 기판 위에 증착시킨 후 $O_2$ 플라즈마를 이용한 Implantation 방식으로 박막을 합성하였고, 라만 분광법, X-ray 광전자 분광법(XPS)을 통해 $MoO_3$ 박막이 nm단위로 합성된 것을 확인하였다. 이를 바탕으로 $MoO_3$ 박막을 2D 가스센서의 소재로 적용하는 것이 가능할 것이라고 예상된다.

  • PDF

Fabrication and Characteristics of a White Emission Electroluminicent Device (백색 전계발광소자의 제작과 그 특성)

  • Kim, Woo-Hyun;Choi, Sie-Young
    • Journal of Sensor Science and Technology
    • /
    • v.10 no.6
    • /
    • pp.295-303
    • /
    • 2001
  • White emission thin film electroluminecent device was fabricated with ZnS for phosphor layers and BST ferroelectric thin film for insulating layers. The ZnS:Mn and $ZnS:SmF_3$ layers were used for emission of red color. Also the $ZnS:TbF_3$ and $ZnS:AgF_3$ layers were used to emission of green and blue color, respectively. And the fabrication conditions of the BST insulating layers were followings, that is, the composition ratio of target, substrate temperature, working pressure and operating gas ratio were $Ba_{0.5}Sr_{0.5}Ti_{0.3}$, $400^{\circ}C$, 30 mTorr and 9:1, respectively. The thickness of phosphor were 150 nm for each layers and the insulating layers of upper and bottom were 400 nm and 200 nm, respectively. The luminesence threshold voltage was $75\;V_{rms}$ and the maximum brightness of the thin film electroluminecent device was $3200\;cd/m^2$ at $100\;V_{rms}$.

  • PDF

Fabrication and Characteristics of ZnO/In Micro-sensor for detecting $NH_3$ gas ($NH_3$ 가스 감지용 ZnO/In 마이크로센서의 제작 및 특성)

  • Kim, Gwon-Tae;Lee, Yong-Sung;Kim, Dae-Hyun;Park, Hyo-Derk;Jeon, Choon-Bae;Ma, Tae-Young;Park, Ki-Cheol
    • Proceedings of the KIEE Conference
    • /
    • 2000.07c
    • /
    • pp.2251-2253
    • /
    • 2000
  • MEMS기술을 이용하여 단층 실리콘 나이트라이드($Si_{3}N_4$) 다이아프램을 제조하고, 이 다이아프램상에 저항성 가열 진공증착법과 고주파 마그네트론 스퍼터링법을 이용하여 차례로 In막과 ZnO막을 증착하고, In의 도핑을 위해 열처리하여 $NH_3$ 가스 감지용 마이크로센서를 제작하였다. 감지막의 열처리온도에 따른 구조적 및 전기적 특성은 XRD, SEM, AFM, 4-point probe 및 Electrometer를 통하여 각각 조사하였다. 제작된 센서의 열처리온도와 인가전력에 따라 $NH_3$ 가스에 대한 감도, 선택성 및 시간응답 특성을 조사하였다. 감지막 두께 3000 ${\AA}$, 열처리온도 400$^{\circ}C$로 제조된 마이크로 센서가 히터 인가전력 366 mW에서 100 ppm의 $NH_3$ 가스농도에서 대하여 16 %, 350 ppm의 가스농도에서 대하여 23 %의 가장 우수한 감도를 나타내었다. 그러나 CO 가스 및 $NO_x$ 가스에 대한 감지특성은 관찰되지 않았다.

  • PDF

Effect of Surfactants on ZnO Synthesis by Hydrothermal Method and Photocatalytic Properties (계면활성제 첨가에 의한 산화아연의 수열합성과 광촉매 특성)

  • Hyeon, Hye-Hyeon;Lee, Dong-Kyu
    • Journal of the Korean Applied Science and Technology
    • /
    • v.34 no.1
    • /
    • pp.50-57
    • /
    • 2017
  • Zinc oxide is, one of metal oxide semiconductor, harmless to human and environment-friendly. It has excellent chemical and thermal stability properties. Wurtzite-zinc oxide is a large band gap energy of 3.37 eV and high exciton binding energy of 60 meV. It can be applied to various fields, such as solar cells, degradation of the dye waste, the gas sensor. The photocatalytic activity of zinc oxide is varied according to the particle shape and change of crystallinity. Therefore, It is very important to specify the additives and the experimental variables. In this study, the zinc oxide were synthesized by using a microwave assisted hydrothermal synthesis. The precursor was used as the zinc nitrate, the pH value was controlled as 11 by NaOH. Surfactants are the ethanolamine, cetyltrimethylammonium bromide, sodium dodecyl sulfate, sorbitan monooleate was added by changing the concentration. The composite particles had the shape of a star-like, curcular cone, seed shape, flake-sphere. Physical and chemical properties of the obtained zinc oxide was characterized using x-ray diffractometer, field emission scanning electron microscopy, thermogravimetric analysis and optical properties was characterized using UV-visible spectroscopy, photoluminescence and raman spectroscopy.

Growth and Opto-electric Characterization of ZnSe Thin Film by Chemical Bath Deposition (CBD(Chemical Bath Deposition)방법에 의한 ZnSe 박막성장과 광전기적 특성)

  • Hong, K.J.;You, S.H.
    • Journal of Sensor Science and Technology
    • /
    • v.10 no.1
    • /
    • pp.62-70
    • /
    • 2001
  • The ZnSe sample grown by chemical bath deposition (CBD) method were annealed in Ar gas at $45^{\circ}C$. Using extrapolation method of X-ray diffraction pattern, it was found to have zinc blend structure whose lattice parameter $a_o$ was $5.6687\;{\AA}$. From Hall effect, the mobility was likely to be decreased by impurity scattering at temperature range from 10 K to 150 K and by lattice scattering at temperature range from 150 K to 293 K. The band gap given by the transmission edge changed from $2.700{\underline{5}}\;eV$ at 293 K to $2.873{\underline{9}}\;eV$ at 10 K. Comparing photocurrent peak position with transmission edge, we could find that photocurrent peaks due to excition electrons from valence band, ${\Gamma}_8$ and ${\Gamma}_7$ and to conduction band ${\Gamma}_6$ were observed at photocurrent spectrum. From the photocurrent spectra by illumination of polarized light on the ZnSe thin film, we have found that values of spin orbit coupling splitting ${\Delta}so$ is $0.098{\underline{1}}\;eV$. From the PL spectra at 10K, the peaks corresponding to free bound excitons and D-A pair and a broad emission band due to SA is identified. The binding energy of the free excitons are determined to be $0.061{\underline{2}}\;eV$ and the dissipation energy of the donor -bound exciton and acceptor-bound exciton to be $0.017{\underline{2}}\;eV$, $0.031{\underline{0}}\;eV$, respectively.

  • PDF