• 제목/요약/키워드: ZnO나노 입자

검색결과 133건 처리시간 0.026초

수용액에 분산된 ZnO 분말의 laser ablation에 의한 ZnO 나노입자의 생성 (Preparation of ZnO Nanoparticles by Laser Ablation of Dispersed ZnO Powder in Solution)

  • 강위경;정영근
    • 대한화학회지
    • /
    • 제50권6호
    • /
    • pp.440-446
    • /
    • 2006
  • 액체상태에 분산된 ZnO 분말을 레이저 ablation 시켜 ZnO 나노입자를 생성하였고, 계면활성제에 따른 생성된 나노입자의 특성을 비교하였다. 생성된 나노 입자는 UV-VIS 흡광 스펙트럼과 X-ray 회절 스펙트럼으로 순수한 ZnO 결정 상태를 나타냄을 확인하였으며, 전자투과 현미경 사진으로 나노입자의 크기, 크기 분포 및 모양을 관찰하였다. 순수한 물에서 얻어진 ZnO 나노입자의 밴드 갭 에너지는 3.35 eV로 bulk ZnO와 비슷한 값을 나타내었으며, 평균 크기는 27 nm로 막대모양의 입자들이 주로 생성되었다. SDS 용액에서 얻어진 ZnO 나노입자는 입자 크기가 평균 28 nm인 주로 구형에 가까운 형태를 가졌으며 CTAB 용액에서 나노입자는 막대 모양의 형태가 많으며 평균 크기가 40 nm 이었다. CTAB 용액에서 만들어진 ZnO 나노입자는 SDS 용액에서 만들어진 ZnO 나노입자 보다 더 안정하였다. 이러한 계면활성제에 따른 ZnO 나노입자의 크기 및 모양, 그리고 안정성의 차이는 ZnO와 계면활성제 사이의 전하 극성 차이로 인한 정정기적 인력과 용매화 차이로 설명할 수 있었다.

아연 나노 입자와 산화아연 나노 입자의 특성과 식물독성 (Characterization and Phytotoxicity of Zn, Zn Oxide Nanoparticles)

  • 김성현;백주형;송이레;신민주;이인숙
    • 대한환경공학회지
    • /
    • 제31권12호
    • /
    • pp.1129-1134
    • /
    • 2009
  • 나노기술이 발전하면서 나노 입자의 특성과 나노 독성에 대한 관심도 증가하고 있다. 그러나 나노 입자의 식물독성에 대한 연구는 부족하다. 본 연구에서는 Zn, ZnO 나노 입자의 각 농도 별로 오이 묘목을 수경 재배하여 식물독성을 조사하였다. 실험 결과, Zn, ZnO 나노 입자의 특성은 deionized water에서 보다 영양용액에서 응집이 더 일어났다. 오이 묘목의 생체량은 100 mg/L 이상에서 유의적으로 감소하였으며 독성은 $Zn^{2+}$> Zn> ZnO 나노 입자순으로 나타났다. TEM 사진 결과, Zn, ZnO 나노 입자는 뿌리 세포벽에 붙어 있었으며 뿌리 세포 내에서도 응집해 있는 것이 관찰되었다.

저온에서 Hydropolymer를 이용한 ZnO 나노입자 염료감응형 태양전지

  • 권병욱;손동익;박동희;홍태우;최헌진;최원국
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제40회 동계학술대회 초록집
    • /
    • pp.439-439
    • /
    • 2011
  • 기존의 고온에서 제작되는 TiO2 나노 입자를 이용한 염료감응형 태양전지를 저온에서 제작하기 위해 전자 이동층으로 ZnO 나노 입자를 사용하여, 저온($200^{\circ}C$)에서 염료감응태양전지(DSSC)를 제작하였다[1,2]. 상대전극(counter electrode)으로는 RF magnetron sputtering을 사용하여 ITO/glass위에 Pt를 증착하여 태양전지의 특성을 측정하였다. $180^{\circ}C$ 이상에서 hydropolymer가 증발되는 것을 이용하여, ZnO 나노입자와 hydropolymer 혼합한 paste 제작하여 소결 후 ZnO 나노입자 사이에 다공성을 생성시켜 Dye가 잘 침투하여 ZnO 나노입자 표면에 잘 흡착 되도록 하였다[3]. 20 nm 및 60 nm 크기의 ZnO 나노 입자를 사용하여 실험 해본 결과, 20 nm에 비하여 60 nm ZnO 나노입자의 경우 IPCE 값이 약 7% 정도로 높은 전환효율 값을 보였다. 60 nm ZnO 나노입자를 전자 수송층으로 사용한 DSSC 소자에서 단위면적당 흐르는 전류(Jsc), 전압 (Voc), fill factor (ff), 그리고 효율(${\eta}$)의 최대값은 4.93 mA/$cm^2$, 0.56V, 0.40, and 1.12%, 로 보였다.

  • PDF

화학적 방법으로 성장된 ZnO nanorod 구조에서 Ag 나노입자의 영향

  • 고영환;유재수
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2009년도 제38회 동계학술대회 초록집
    • /
    • pp.189-189
    • /
    • 2010
  • ZnO nanorods 구조는 광소자 및 태양광 소자의 성능을 향상시키기 위해서 무반사계수, 광추출효율, 전기적, 열적 전도도를 개선시킬 수 있어, 매우 큰 관심을 가지고 왔다. 또한 Ag 나노입자는 표면 플라즈몬 효과를 이용하여 LED나 태양전지에 응용하여 소자의 성능이 향상됨을 이론적, 실험적으로 증명되어 왔으며, 현재에도 활발한 연구가 진행되고 있다. 이러한 ZnO nanorods 특성과 Ag 나노입자의 표면 플라즈몬 효과를 이용하기 위해서, 본 연구에서는 Ag 나노 입자를 형성된 ZnO seed층에 ZnO nanorods를 성장시켰다. 시료를 제작을 위해서 비교적 성장이 간단하고 저온성장이 가능한 화학적 합성방법을 이용하였다. Ag 나노입자가 형성된 ZnO seed층 제작을 위해서 먼저 Si 기판위에 RF magnetron 스퍼터를 이용하여 고진공, $N_2$ 분위기에서 일정한 두께로 증착을 하였으며, 이후 Ag 박막을 thermal evaporator로 10 nm 두께로 증착하였다. 그 다음, 크기가 다른 Ag 나노입자를 형성을 위해서 rapid thermal annealing (RTA)을 여러 가지 온도에서 수행하였다. 그리고 이러한 시료들를 이용하여, ZnO nanorods를 성장하기 위하여, $90-95^{\circ}$의 온도에서 zinc nitrate $Zn(NO_3)_2{\cdot}6H_2O$과 hexamethylentetramines (HMT)으로 혼합된 용액에 담가두어 ZnO nanorods를 성장시켰다. Ag 나노입자의 크기에 따라 ZnO nanorods의 구조와 형태에 대하여 어떠한 영향을 주는지를 관찰하기 위해 field emission scanning electron microscopy (FE-SEM)을 이용하여 측정하였으며, Ag와 ZnO의 성분분석과 결정성을 조사하기 위해 X-ray diffraction (XRD)을 이용하여 분석하였다. 그리고 표면 플라즈몬에 의한 영향에 대하여 조사하기 위해, ZnO nanorods와 Ag 나노입자가 형성된 ZnO nanorods를 UV-Vis-NIR spectrophotometer을 이용하여 흡수계수와 반사계수를 비교하여 측정하였으며. 태양전지의 성능향상을 수 있음을 이론적으로 계산하였다. 그리고 또한 photoluminescence (PL) 분석을 수행하여 ZnO nanorods의 구조에 대하여 Ag 나노입자의 영향에 대한 광특성을 측정하였다.

  • PDF

수생태계에서 ZnO, TiO2나노입자 응집체가 물벼룩(Daphnia magna)에 미치는 영향 (Effect of Daphnia magna on Nanoparticle(ZnO, TiO2) Aggregates in Aqueous System)

  • 이하늘;이병우;박찬일;김무찬
    • 해양환경안전학회지
    • /
    • 제20권5호
    • /
    • pp.468-473
    • /
    • 2014
  • 본 연구에서는 정제되지 않은 ZnO 및 $TiO_2$나노입자를 M4배지에 노출시켜 두 나노입자가 어느 정도 크기의 응집체로 변화되는지를 살펴보고 또한 두 나노입자가 수생태계 생물종인 Daphnia magna에 어떠한 영향을 초래하는지 유영저해 및 폐사율을 통해 살펴보았다. ZnO 및 $TiO_2$나노입자의 분말상태 크기는 각각 20 nm와 40 nm였지만, M4배지에서는 1333 nm와 1628 nm로 약 40~70배의 크기로 응집되었다. 유영저해의 경우 ZnO와 $TiO_2$나노입자 모두 시간 및 농도가 높아질수록 D.magna가 유영하는데 영향을 미친 것으로 나타났으며, 특히 ZnO나노입자가 $TiO_2$나노입자에 비해 더 큰 영향을 미치는 것으로 나타났다. 폐사율의 경우 ZnO나노입자에서는 시간 및 농도가 높아질수록 폐사되는 비율이 높았으며, $TiO_2$나노입자에서는 72시간이 경과된 시점의 10 ppm 이상의 농도에서 폐사하는 것으로 관찰되었다. 이는 나노입자가 해양에 유입됨으로 인해 원래의 크기에 비해 응집되어 증가되어진다는 것을 알 수 있으며, 또한 그 응집체로 인해 수생태계 생물에 영향을 주는 것으로 나타났다.

Sol-gel 법을 이용한 ZnO-$TiO_2$ Core-shell 나노입자의 합성

  • 양희수;남상훈;조상진;정원석;부진효
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제41회 하계 정기 학술대회 초록집
    • /
    • pp.366-366
    • /
    • 2011
  • 이성분 산화물인 ZnO/$TiO_2$ core-shell 나노입자는 core-shell 구조의 특성과 이성분 산화물의 상호작용에 의해서 염료감응형 태양전지의 효율향상을 기대할 수 있다. Znic acetate($Zn_2(CH_3COO)$)와 Titanium(IV) butoxide($Ti(OBu)_4$)를 이용하여 ZnO 나노입자를 수열합성하고 그 주의에 $TiO_2$을 가수분해 반응을 이용하여 둘러싸는 core-shell형태의 물질을 합성하였다. 그 이후 결정성 및 유기물 제거를 위해서 4시간 동안 고온에서 소성하였다. SEM 결과에 따르면 소성 온도를 600도까지 증가시키면 ZnO의 경우 나노입자의 크기가 증가하는 경향을 확인하였다. 하지만 core-shell의 경우는 ZnO의 뭉침현상을 $TiO_2$이 방해하여 초기합성된 크기와 동일한 크기를 유지하는 것을 확인하였다. 또한 XRD 결과에 따르면 주변에 형성된 $TiO_2$ 이외에 $Zn_2TiO_4$의 spinel 구조를 가지는 물질이 합성되는 것을 확인할 수 있었다. 합성된 core-shell 구조의 나노입자는 약 40~50 nm의 크기를 가지고 600도에서 소성된 입자의 경우 산소 정공이 거의 없는 약 3 eV의 밴드갭을 가지는 물질로 합성이 되었다. Core-shell 나노입자의 경우 염료 감응형 태양전지의 반도체 물질로 응용 가능할 것으로 판단된다.

  • PDF

금속 산화물 나노입자가 포함된 ZnO 박막의 광학적 및 전기적 특성 연구

  • 이동욱;오규진;심성민;김은규
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제45회 하계 정기학술대회 초록집
    • /
    • pp.210.1-210.1
    • /
    • 2013
  • ZnO는 태양전지의 투명전극 및 윈도우 물질로 그 동안 광범위하게 사용되어 왔다. 하지만 태양광의 효율 증가를 위하여서는 가시광 영역뿐만 아니라 자외선 및 적외선 영역을 이용할 필요가 있다. 또한 금속 산화물 반도체 나노 입자는 크기를 조절하여 흡수하는 태양광의 파장 영역을 조절할 수 있고 이를 이용하여 이종구조를 사지는 고효율의 태양전지를 구현할 수 있다. 본 연구에서는 3.4 eV의 에너지 밴드갭을 가지는 ZnO박막내에 밴드갭을 조절 할 수 있는 금속 산화물 나노입자를 삽입하여 광학적, 전기적 특성을 연구하였다. ZnO 박막을 증착하기 전 유리 및 사파이어 기판에 스퍼터를 사용하여 Pt금속전극을 형성한 이후, ZnO 박막을 $1{\times}10^{-10}$ Torr의 기본 진공도를 유지하는 초고진공 스퍼터를 사용하여 100 nm 두께로 증착 하였다. 금속 산화물 나노 입자를 제작 하기 위하여, ZnO 박막에 열증착 장비(thermal evaporator)를 사용하여 In 나노 입자를 10 nm 이하의 크기로 제작 하였다. 그 상부에 초고진공 스퍼터 와 열증착 장비를 사용하여 ZnO 박막 및 In 나노 입자를 순차적으로 증착하여 수백 nm 두께의 ZnO 박막을 제작한다. ZnO 박막 내부에 형성된 In 양자점은 ZnO 증착공정 중에 산화되어 $In_2O_3$ 의 산화물 나노 입자로 형성되며, 내부의 구조는 투과전자 현미경을 사용하여 확인 하였다. 제작된 금속 산화물 나노입자가 포함된 ZnO 박막의 광학적 특성을 photoluminescence, UV-Vis spectroscopy, ellipsometry를 통하여 확인 하였으며, solar simulator와 전류-전압 특정 장비를 사용하여 전기적 특성을 분석 하였다.

  • PDF

수중에서 유체 플라즈마 공정을 활용하여 합성 된 ZnO 나노입자의 특성 평가 (Evaluation of ZnO Nanoparticles Synthesized in Water by Solution Plasma Processing)

  • 모리시타 쇼헤이;김성철;김성민;네모토 심페이;김정완;이상율
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2014년도 추계학술대회 논문집
    • /
    • pp.280-280
    • /
    • 2014
  • 본 연구에서는 유체 플라즈마 공정 (Solution plasma process; SPP)이라고 불리우는 새로운 공정법을 이용하여 ZnO 나노입자를 합성하였고 그 입도와 분산성을 평가하였다. 이 방법으로 인해 합성된 ZnO 나노입자는 10~60 nm 범위의 입도를 가지며, 플라즈마 처리시간이 길어질수록 유체 내 ZnO 나노입자의 분산성이 향상되었다.

  • PDF

착체중합법과 sol-gel법에 의한 ZnO@TiO2 나노 코아쉘 구조의 제조 (Preparation of ZnO@TiO2 nano coreshell structure by the polymerized complex and sol-gel method)

  • 임창성
    • 분석과학
    • /
    • 제21권3호
    • /
    • pp.237-243
    • /
    • 2008
  • 착체중합법과 sol-gel법을 이용하여 ZnO 나노입자 표면상에 $TiO_2$ 입자를 코팅한 나노 코아쉘 구조를 제조하였다. 착체중합법으로 제조된 ZnO 입자는 평균입도가 약 100 nm, sol-gel법으로 제조된 $TiO_2$ 입자는 10 nm 이하의 크기로 각각 구성되었다. $ZnO@TiO_2$ 나노 코아쉘 구조의 평균입도는 약 150 nm의 크기를 나타내었다. 착체중합법으로 제조된 구형의 ZnO 나노 입자는 콜로이드상의 $TiO_2$ 입자의 균일한 표면흡착으로 인해 착체중합법으로 제조된 ZnO 입자의 입자간 응집이 크게 제어되었다. ZnO와 $TiO_2$의 이종 입자간의 표면전하는 pH 7 근처의 중성 영역에서 iso-electric point (IEP)의 차이로 인하여 - 로 대전된 $TiO_2$와 + 로 대전된 ZnO 나노입자의 이종의 입자들이 쿨롱의 인력에 의해 서로간의 결합을 하게 되고, 결합을 이룬 $ZnO@TiO_2$ 나노 코아쉘 구조가 표면 전하가 zero가 되어 발생하게 된다.

Au-ZnO 나노복합체의 국부화된 플라즈몬 효과에 따른 유기발광소자의 효율 향상

  • 이용훈;김대훈;김태환
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.219-219
    • /
    • 2016
  • 유기발광소자는 저전력, 빠른 응답속도, 고휘도 및 자체발광 등의 장점들 때문에 고체 광원과 플렉서블 디스플레이로 연구가 진행되고 있다. 유기발광소자는 유기 발광층을 인광물질로 사용 함으로서 100 % 내부양자 효율을 이루고 있지만 공기와 유리기판의 계면과 유리 기판과 ITO 계면에서 발생하는 내부 전반사 효과와 유기물과 ITO 기판 사이에서 발생하는 웨이브 가이드 효과 등으로 인해 발광량의 약 20 %만을 외부로 추출 할 수 있다. 따라서 유기발광소자의 광 추출 효과를 증가시키기 위해서 소자외부에 아웃커플링 필름 또는 마이크로렌즈 어레이 필름을 부착시키는 방법, 금속 나노 입자를 유기발광소자 내에 삽입하여 표면 플라즈몬 효과로 인한 광추출 효율을 높이는 방법 등이 제시되고 있다. 본 연구에서는 Au-ZnO 나노복합체를 간단한 졸겔법을 이용하여 양극 버퍼층으로 사용하여 그에 따른 계면, 전기적 및 광학적 특성을 분석하였다. Au-ZnO 나노복합체를 포함한 tris(8-hydroxyquinolinato) aluminium (Alq3) 발광층에서 ZnO를 포함한 Alq3 발광층보다 엑시톤 수명이 빠르게 감소하는 것을 시간 관련 단광자 계산(Time-Correlated Single Photon Counting) 측정을 통해서 알 수 있었다. 이러한 결과는 Au 금속 나노입자의 플라즈몬 흡수 파장과 Alq3 발광층에서 생성되는 발광 파장이 겹쳐서 효과적인 공명 에너지 전달효과로 인해 Alq3 발광층의 발광성질이 향상된 것을 의미한다. Au-ZnO 나노복합체와 ZnO 나노입자를 가지는 유기발광소자의 전류 효율은 50 mA/cm2 에서 각각 2.27와 1.83 cd/A 가지는 것으로 확인 되었다. 또한 Au-ZnO 나노복합체와 ZnO 나노입자를 사용한 유기발광소자의 전압-전류밀도가 유사한 것을 확인 할 수 있는데 이는 Au 금속 나노입자가 ZnO 나노입자의 정공 주입능력을 저하시키지 않는 것을 의미한다.

  • PDF