• Title/Summary/Keyword: ZnO/Si

Search Result 1,048, Processing Time 0.032 seconds

Phase Evolution, Microstructure and Microwave Dielectric Properties of Zn1.9-2xLixAlxSi1.05O4 Ceramics

  • Kim, Yun-Han;Kim, Shin;Jeong, Seong-Min;Kim, So-Jung;Yoon, Sang-Ok
    • Journal of the Korean Ceramic Society
    • /
    • v.52 no.3
    • /
    • pp.215-220
    • /
    • 2015
  • Phase evolution, microstructure, and microwave dielectric properties of $Li_2O$ and $Al_2O_3$ doped $Zn_{1.9}Si_{1.05}O_4$, i.e., $Zn_{1.9-2x}Li_xAl_x-Si_{1.05}O_4$, ceramics (x = 0.02 ~ 0.10) were investigated. The ceramics were densified by $SiO_2$-rich liquid phase composed of the Li-Al-Si-O system, indicating that doped Li and Al contributed to the formation of the liquid. As the secondary phase, ${\beta}$-spodumene solid solution with the composition of $LiAlSi_3O_8$ was precipitated from the liquid during the cooling process. The dense ceramics were obtained for the specimens of $$x{\geq_-}0.06$$ showing the rapid densification above $1000^{\circ}C$, implying that a certain amount of liquid is necessary to densify. The specimen of x = 0.06 sintered at $1050^{\circ}C$ exhibited good microwave dielectric properties; the dielectric constant and the quality factor ($Q{\times}f_0$) were 6.4 and 11,213 GHz, respectively.

ZnTiO 박막의 성장과 전기적 특성 연구

  • Yu, Han-Tae;Lee, Yeong-Min;Yu, Seung-Yong;Kim, Hyeong-Jun;Lee, Jin-Yong;Lee, Se-Jun;Kim, Deuk-Yeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.190-190
    • /
    • 2010
  • 본 연구에서는 Ti이 도핑된 ZnO의 성장 및 후처리 과정에 따른 구조적, 전기적, 자기적 특성에 관하여 보고한다. ZnTiO 박막은 Pt/SiO2/Si기판에 $500^{\circ}C$, 20 mTorr에서 RF 마그네트론 스퍼터법과 DC 마그네트론 스퍼터법으로 코스퍼터링을 통하여 증착 하였다. 그리고 박막 성장 후 질소분위기에서 $600{\sim}900^{\circ}C$($50^{\circ}$ step)에서 급속 열처리 공정(RTA)을 이용하여 후열처리에 따른 특성변화를 관찰하였다. 구조적 특성변화를 확인하기 위하여 XRD 측정을 하였으며, Ti이 Zn와 치환되어 성장 한 것을 관측하였다. 한편 자기적 특성 확인을 위한 SQUID 측정 결과, ZnTiO 박막에서 강자성 특성인 자기-이력곡선을 확인하였다. 또한 강유전 특성 분석을 위한 I-V 측정에서 ZnTiO 박막에서 강유전 특성인 전류-이력 현상을 관측하였다.

  • PDF

Characteristics of SAW humidity sensor using nanocrystalline ZnO films

  • Hong, Hoang-Si;Chung, Gwiy-Sang
    • Journal of Sensor Science and Technology
    • /
    • v.19 no.5
    • /
    • pp.337-341
    • /
    • 2010
  • In this work, the nanocrystalline ZnO/polycrystalline(poly) aluminum nitride(AlN)/ Si-layered structure was fabricated for humidity sensor applications based on surface acoustic wave(SAW). The ZnO film was used as a sensitive material layer. The ZnO and AlN(0002) were deposited by a sol-gel process and a pulse reactive magnetron sputtering, respectively. The ZnO sensitive films coated on AlN have a hexagonal wurtzite structure after the thin films annealed at $400^{\circ}C$, $500^{\circ}C$ and $600^{\circ}C$. The surface of the film exhibits sponginess and a nanometer particle size(below 50 nm). The largest shift in the frequency response was at approximately 200 kHz(the relative humidity: 10 %~90 %) for the structure annealed at $400^{\circ}C$. The effect of the change in the environmental temperature on the frequency response of the SAW humidity sensor was also investigated.

Partially Dehydrated Fully Zn2+-exchanged Zeolite Y (FAU, Si/Al = 1.70) and Its Structure

  • Seo, Sung Man;Kim, Young Hun;Lee, Seok Hee;Lim, Woo Taik
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.46 no.2
    • /
    • pp.87-91
    • /
    • 2013
  • The crystal structure of partially dehydrated fully $Zn^{2+}$-exchanged zeolite Y was determined by X-ray diffraction techniques in the cubic space group $Fd\bar{3}m$ at 294(1) K and refined to the final error indices $R_1/wR_2$ = 0.035/0.119 for $|Zn_{35.5}(H_2O)_{13}|[Si_{121}Al_{71}O_{384}]$-FAU. About 35.5 $Zn^{2+}$ ions per unit cell are found at six distinct positions; sites I, I', a second I', II', II, and a second II. In sodalite cavities, the 11 water molecules coordinate to Zn(I'b) and/or Zn(II') ions; each of two $H_2O$ bonds to a Zn(IIb) in supercages. Two different $Zn^{2+}$ positions near 6-oxygen ring are due to their Si-Al ordering in tetrahedral site by Si/Al ratio leading to the different kinds of 6-rings.