• Title/Summary/Keyword: ZnO/Cu/ZnO

Search Result 840, Processing Time 0.029 seconds

Characterization of Chemical Bath Deposited ZnS Thin Films and Its application to $Cu(InGa)Se_2$ Solar Cells (용액성장법에 의한 황화아연 박막층 분석 및 이의 CIGS 태양전지로의 응용)

  • Shin, Dong-Hyeop;Larina, Liudmila;Yun, Jae-Ho;Ahn, Byung-Tae
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.138-138
    • /
    • 2009
  • Recently, thin-film solar cells of Cu(In,Ga)$Se_2$(CIGS) have reached a high level of performance, which has resulted in a 19.9%-efficient device. These conventional devices were typically fabricated using chemical bath deposited CdS buffer layer between the CIGS absorber layer and ZnO window layer. However, the short wavelength response of CIGS solar cell is limited by narrow CdS band gap of about 2.42 eV. Taking into consideration the environmental aspect, the toxic Cd element should be replaced by a different material. It is why during last decades many efforts have been provided to achieve high efficiency Cd-free CIGS solar cells. In order to alternate CdS buffer layer, ZnS buffer layer is grown by using chemical bath deposition(CBD) technique. The thickness and chemical composition of ZnS buffer layer can be conveniently by varying the CBD processing parameters. The processing parameters were optimized to match band gap of ZnS films to the solar spectrum and exclude the creation of morphology defects. Optimized ZnS buffer layer showed higher optical transmittance than conventional thick-CdS buffer layer at the short wavelength below ~520 nm. Then, chemically deposited ZnS buffer layer was applied to CIGS solar cell as a alternative for the standard CdS/CIGS device configuration. This CIGS solar cells were characterized by current-voltage and quantum efficiency measurement.

  • PDF

Vertical Distribution of Heavy Metals in Paddy Soil Adjacent to Lead and Zinc Mining Sites and Their Relation to Soil Characteristics (연.아연 금속광산 주변 농경지 토양중 중금속의 수직분포와 토양특성과의 관계)

  • 이민효;유홍일;서윤수
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.1 no.2
    • /
    • pp.80-84
    • /
    • 1994
  • The objective of this study was to find out the relationships between the vertical distribution of heavy metals in paddy soils and some soil characteristics. One hundred eight soil samples were collected by soil depths from 27 points of paddy fields in the vicinity of lead-zinc mining sites, and heavy metal contents and the physico-chemical characteristics of the soils were analysed. The results obtained were summarized as follows; 1) Distribution of heavy metals (Cd, Cu, Pb, Zn and As) by soil depths were ranged 42-51% in 0- 15 cm, 21-29% in 15- 30 cm, 12- 17% in 30-60 cm and 11-14% in 6o-100 cm. 2) The distribution of As by soil depth showed clear difference between sandy loam and loam, while that of Cd, Cu, Pb and Zn did not show any difference between these textures. 3) Distribution of Cd, Cu, Pb, Zn and As by different soil depths showed significantly negative correlation with soil pH value but they showed significantly positive correlation with soil organic matter content. 4) Cadmium, copper, lead, and zinc in soil had tendency to be highly correlated in each soil depth. Especially, high correlation was shown at the depth of 0- 15 cm, 30-60 cm and 60-100 cm for Pb and Zn, and 0-15 cm for Cd and Zn. Arsenic in soil was not correlated with these heavy metals.

  • PDF

Effect of Degraded Al-doped ZnO Thin Films on Performance Deterioration of CIGS Solar Cell (고온 및 고온고습 환경 내에서 ZnO:Al 투명전극의 열화가 CIGS 박막형 태양전지의 성능 저하에 미치는 영향)

  • Kim, Do-Wan;Lee, Dong-Won;Lee, Hee-Soo;Kim, Seung-Tae;Park, Chi-Hong;Kim, Yong-Nam
    • Journal of the Korean Ceramic Society
    • /
    • v.48 no.4
    • /
    • pp.328-333
    • /
    • 2011
  • The influence of Al-doped ZnO (AZO) thin films degraded under high temperature and damp heat on the performance deterioration of Cu(In,Ga)$Se_2$ (CIGS) solar cells was investigated. CIGS solar cells with AZO/CdS/CIGS/Mo structure were prepared on glass substrate and exposed to high temperature ($85^{\circ}C$) and damp heat ($85^{\circ}C$/85% RH) for 1000 h. As-prepared CIGS solar cells had 64.91% in fill factor (FF) and 12.04% in conversion efficiency. After exposed to high temperature, CIGS solar cell had 59.14% in FF and 9.78% in efficiency, while after exposed to damp heat, it had 54.00% in FF and 8.78% in efficiency. AZO thin films in the deteriorated CIGS solar cells showed increases in resistivity up to 3.1 times and 4.4 times compared to their initial resistivity after 1000 h of high temperature and damp heat exposure, respectively. These results can be explained by the decreases in carrier concentration and mobility due to diffusion or adsorption of oxygen and moisture in AZO thin films. It can be inferred that decreases in FF and conversion efficiency were caused by an increase in series resistance, which resulted from an increase in resistivity of AZO thin films degraded under high temperature and damp heat.

Study on Synthesis and Electromagnetic Properties of Ni- Zn Ferrite Sintered at Low Temperature (저온 소결용 Ni-ZN계 페라이트의 합성 및 전자기적 특성 연구)

  • Kim, Chul-Won;Koh, Jae-Gui
    • Korean Journal of Materials Research
    • /
    • v.12 no.8
    • /
    • pp.600-607
    • /
    • 2002
  • The Ni-Zn synthetic ferrite were acquired from thermally decomposing the metal nitrates Fe(NO$_3$)$_3$.$9H_2$O, Zn($NO_3$)$_2$.$6H_2$O, Ni($NO_3$)$_2$. $6H_2$O, and Cu($NO_3$)$_2$. $3H_2$O at $150^{\circ}C$ for 24 hours and was calcined at $500^{\circ}C$. Each of those was pulverized for 3, 6, 9, and 12 hours in a steel ball mill and was sintered between $700^{\circ}C$ and $1,000^{\circ}C$ for 1 hour, and then their microstructures and electromagnetic properties were examined. We could make the initial specimens chemically bonded in liquid at the temperature as low as $150^{\circ}C$, by using the melting points less than $200^{\circ}C$ of the metal nitrates instead of the mechanical ball milling, then narrowed a distance between the particles into a molecular level, and thus lowed sintering temperature by at least $200^{\circ}C$ to$ 300^{\circ}C$. Their initial permeability was 50 to 400 and their saturation magnetic induction density and coercive force 2,400 G and 0.3 Oe to 0.5 Oe each, which were similar to those of Ni- Zn ferrite synthesized in the conventional process. In the graph of initial permeability vs frequencies, we could observe a $180^{\circ}C$rotation of the magnetic domain, which appears in a broad band of microwave near the resonance frequency.

Variation of Cadmium and Zinc Content in Rice and Soil of the Mangyeong River Area (만경강 유역의 토양과 수도체중 Cd 및 Zn 함량의 변화)

  • Kim, Seong-Jo;Baek, Seung-Hwa;Kim, Un-Sung;Yoon, Ki-Woun;Moon, Kwang-Hyun;Kang, Gyeong-Won
    • Korean Journal of Environmental Agriculture
    • /
    • v.13 no.2
    • /
    • pp.142-150
    • /
    • 1994
  • To investigate differences in Cd and Zn contents of paddy soils and rice plants polluted by the municipal and industrial waste water in the Mangyeong River Area, soil and plant samples were collected at several distances from the main inlet and at different depths of the soil. Soil samples were extracted with $4M-HNO_3$ and plant samples were digested with a mixture of $HNO_3$and $HClO_4$for analyzing heavy metals by atomic absorption spectrophotometry. The contents of Cd and Zn in soils ranged from 0.38 to 1.17 and from 33.8 to 464.6mg kg^{-1}, respectively. The average Cd level in 1990 was less than that in 1982, but the Zn level in 1990 was higher than that in 1982 in general. No variation in Cd contents was observed in soils at the different distances from the source of waste water, but Zn contents in soils were lower with the increasing distances from the source of waste water. A significant correlation was observed among Cd content, OM, available silicate, CEC and $Ca^{++}$. Similar results existed among Zn content of 1982, OM and $Ca^{++}$. The Cd content in subsurface soils of 1992 was significantly correlated with Zn, Cu, and Pb in soils, and the Zn content in soils was significantly correlated with the Cu and Pb in soils, regardless of years. The Cd content in leaf blades of rice was more than seven times higher than that in brown rice. The Zn content in rice was higher than that in leaf blades and in panicle axis. The Cd content in panicle axis and the Zn content in all parts of rice were correlated with Zn, Cu and Pb contents in soils. The Cd and Zn contents in brown rice ranged from 0.10 to 0.90mg $kg^{-1}$ and from 4.2 to 95.9mg $kg^{-1}$ in the Mangyeong River Area, respectively.

  • PDF

Removal Characteristics of Mixed Heavy Metals from Aqueous Solution by Recycled Aggregate as Construction Waste (건설폐기물인 순환골재를 이용한 수용액상에서의 혼합 중금속 제거 특성)

  • Shin, Woo-Seok;Kim, Young-Kee
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.16 no.2
    • /
    • pp.115-120
    • /
    • 2013
  • This study examined the removal rate of mixed heavy metals from aqueous solution using recycled aggregate. The recycled aggregate is favorable for the absorbent because it contains about 95% (CaO, $SiO_2$, $Al_2O_3$ and $Fe_2O_3$), which are major ingredient of adsorbent for heavy metal. The kinetic data presented that the slow course of adsorption follows the Pseudo first and second order models. The equilibrium data were well fitted by the Langmuir model and showed the affinity order: $Cu^{2+}$ > $Pb^{2+}$ > $$Zn^{2+}{\simeq_-}Ni^{2+}$$ > $Cd^{2+}$. The results also showed that adsorption rate slightly increased with increasing pH from 6 to 10. Moreover, this trend is similar to results obtained as function of loading amount of recycled aggregate. Meanwhile, an unit adsorption rate was slightly decreased. From these results, it was concluded that the absorbents can be successfully used the removal of the heavy metals from the aqueous solutions.

Synthesis of New Nitrogen-Oxygen(N3O2) Pentadentate Ligands and the Substituent Effect on the Stability Constants of the Heavy(II) Metal Complexes (새로운 질소-산소(N3O2)계 다섯 자리 리간드의 합성과 중금속(II) 이온들의 착물 안정도상수에 대한 치환기효과)

  • Kim, Sun-Deuk;Lee, Hye-Won;Seol, Jong-Min
    • Journal of Environmental Science International
    • /
    • v.19 no.7
    • /
    • pp.849-860
    • /
    • 2010
  • A new $N_3O_2$ pentadentate ligand, N,N'-Bis(2-hydroxybenzyl)-ethylenetriamine(H-BHET 3HCl) was synthesized. The hydrochloric acid salts of Br-BHET 3HCl, Cl-BHET 3HCl, $CH_3O$-BHET 3HCl and $CH_3$-BHET 3HCl containing Br-, Cl-, H-, $CH_3O-$ and $CH_3-$ groups at the para-site of the phenol group of the H-BHEP were synthesized. The structures of the ligands were confirmed by C. H. N. atomic analysis and $^1H$ NMR, $^{13}C$ NMR, UV-visible and mass spectra. The calculated stepwise protonation constants(${\logK_n}^H$) of the synthesized $N_3O_2$ ligands showed six steps of the proton dissociation. The orders of the overall protonation constants($\log{\beta}_p$) of the ligands were Br-BHET < Cl-BHET < H-BHET < $CH_3O$-BHET < $CH_3$-BHET. The orders agreed well with that of para Hammett substituent constants(${\delta}_p$). The calculated stability constants($\logK_{ML}$) between the ligands and heavy metal ions (Co(II), Ni(II), Cu(II), Zn(II), Cd(II) and Pb(II)) agreed well with the order of the overall proton dissociation constants of the ligands but they showed a reverse order in para Hammestt substituent constants(${\delta}_p$). The order of the stability constants between the heavy metal ions with the synthesized ligands were Co(II) < Ni(II) < Cu(II) > Zn(II) > Cd(II) > Pb(II).

Study of ZnS/CIGS Hetero-interface for Cd-free CIGS Solar Cells (Cd-free 태양전지를 위한 ZnS/CIGS 이종접합 특성 향상 연구)

  • Shin, Donghyeop;Kim, Jihye;Go, Youngmin;Yun, Jaeho;Ahn, Byungtae
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.106.1-106.1
    • /
    • 2011
  • The Cu(In,Ga)Se2 (CIGS) thin film solar cells have been achieved until almost 20% efficiency by NREL. These solar cells include chemically deposited CdS as buffer layer between CIGS absorber layer and ZnO window layer. Although CIGS solar cells with CdS buffer layer show excellent performance, the short wavelength response of CIGS solar cell is limited by narrow CdS band gap of about 2.42 eV. Taking into consideration the environmental aspect, the toxic Cd element should be replaced by a different material. Among Cd-free candidate materials, the CIGS thin film solar cells with ZnS buffer layer seem to be promising with 17.2%(module by showa shell K.K.), 18.6%(small area by NREL). However, ZnS/CIGS solar cells still show lower performance than CdS/CIGS solar cells. There are several reported reasons to reduce the efficiency of ZnS/CIGS solar cells. Nakada reported ZnS thin film had many defects such as stacking faults, pin-holes, so that crytallinity of ZnS thin film is poor, compared to CdS thin film. Additionally, it was known that the hetero-interface between ZnS and CIGS layer made unfavorable band alignment. The unfavorable band alignment hinders electron transport at the heteo-interface. In this study, we focused on growing defect-free ZnS thin film and for favorable band alignment of ZnS/CIGS, bandgap of ZnS and CIGS, valece band structure of ZnS/CIGS were modified. Finally, we verified the photovoltaic properties of ZnS/CIGS solar cells.

  • PDF

White Electroluminescent Device by ZnS: Mn, Cu, Cl Phosphors

  • Kim, Jong-Su;Park, Je-Hong;Lee, Sung-Hun;Kim, Gwang-Chul;Kwon, Ae-Kyung;Park, Hong-Lee
    • Journal of the Semiconductor & Display Technology
    • /
    • v.5 no.3 s.16
    • /
    • pp.1-4
    • /
    • 2006
  • White-light-emitting ZnS:Mn, Cu, Cl phosphors with spherical shape and the size of $20\;{\mu}m$ are successfully synthesized. They have the double phases of cubic and hexagonal structures. They are applied to electroluminescent (EL) devices by silk screen method with the following structure: $electrode/BaTiO_3$ insulator layer ($50{\sim}60\;{\mu}m$)/ ZnS:Mn, Cu, Cl phosphor layer ($30{\sim}50\;{\mu}m$)/ITO glass. The EL devices are driven with the voltage of 100 V and the frequency of 400 Hz. The EL devices show the three emission peaks. The blue and green emission bands are originated from $CICu^{2+}$ transition and $ClCu^+$ transition, respectively. The yellow emission band results from $^4T^6A$ transition of $Mn^{2+}$ ion. As an increase of Cu concentrations, the blue and green emission intensities decrease whereas the yellow emission intensity increases; the quality becomes warm white. It is due to the energy transfer from the blue and green bands to the yellow band.

  • PDF

Adsorption Characteristics of Heavy Metals using Sesame Waste Biochar (참깨 부산물 Biochar의 중금속 흡착특성)

  • Choi, Ik-Won;Seo, Dong-Cheol;Kang, Se-Won;Lee, Sang-Gyu;Seo, Young-Jin;Lim, Byung-Jin;Heo, Jong-Soo;Cho, Ju-Sik
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.46 no.1
    • /
    • pp.8-15
    • /
    • 2013
  • Little research has been conducted to explore the heavy metal removal potential of biochar. The adsorption characteristics of heavy metals by sesame waste biochar (pyrolysis at $600^{\circ}C$ for 1 hour) as heavy metal absorbent were investigated. The sesame waste biochar was characterized by SEM-EDS and FT-IR, and heavy metal removal was studied using Freundlich and Langmuir equations. The removal rates of heavy metals were higher in the order of Pb>Cu>Cd>Zn, showing that the adsorption efficiency of Pb was higher than those of any other heavy metals. Freundlich and Langmuir adsorption isotherms were used to model the equilibrium adsorption data obtained for adsorption of heavy metals on biochar produced from sesame waste. Pb, Cu, Cd and Zn equilibrium adsorption data were fitted well to the two models, but Pb gave a better fit to Langmuir model. Heavy metals were observed on the biochar surface after adsorption by scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). Main functional groups were aromatic C=O ring (at $1160cm^{-1}$, $1384cm^{-1}$ and $1621cm^{-1}$) by FT-IR analysis. Thus, biochar produced from sesame waste could be useful adsorbent for treating heavy metal wastewaters.