• Title/Summary/Keyword: ZnGa2O4

Search Result 237, Processing Time 0.033 seconds

Fabrication and Characteristics of ZnO TFTs for Flexible Display using Low Temp Process (Flexible Display용 Low Temp Process를 이용한 ZnO TFT의 제작 및 특성 평가)

  • Kim, Young-Su;Kang, Min-Ho;Nam, Dong-Ho;Choi, Kang-Il;Oh, Jae-Sub;Song, Myung-Ho;Lee, Hi-Deok;Lee, Ga-Won
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.44-44
    • /
    • 2009
  • Recently, transparent ZnO-based TFTs have attracted much attention for flexible displays because they can be fabricated on plastic substrates at low temperature. We report the fabrication and characteristics of ZnO channel layers(ZnO TFTs) having different channel thicknesses. The ZnO film were deposited as active channel layers on $Si_3N_4/Ti/SiO_2p$-Si substrates by rf magnetron sputtering at $100\;^{\circ}C$ without additional annealing. Also the Zno thin films deposited at oxygen partial pressures of 40%. ZnO TFTs using a bottom-gate configuration were investigated. The $Si_3N_4$ film were deposited as gate insulator by PE-CVD at $15\;^{\circ}C$. All Processes were processed below $150^{\circ}C$ which is optimal temperature for flexible display and were used dry etching method.

  • PDF

Microstructure Evaluation and Wear Resistance Property of Al-Si-X/Al2O3 Composite by the Displacement Reaction in Al-Mg Alloy Melt using High Energy Mechanical Milled Al-SiO2-X Composite Powder (HEMM Al-SiO2-X 복합 분말을 Al-Mg 용탕에서 자발 치환반응으로 제조된 Al-Si-X/Al2O3 복합재료의 조직 및 마멸 특성)

  • Woo, Kee-Do;Kim, Dong-Keon;Lee, Hyun-Bom;Moon, Min-Seok;Ki, Woong;Kwon, Eui-Pyo
    • Korean Journal of Materials Research
    • /
    • v.18 no.6
    • /
    • pp.339-346
    • /
    • 2008
  • Single-crystal $ZnIn_2S_4$ layers were grown on a thoroughly etched semi-insulating GaAs (100) substrate at $450^{\circ}C$ with a hot wall epitaxy (HWE) system by evaporating a $ZnIn_2S_4$ source at $610^{\circ}C$. The crystalline structures of the single-crystal thin films were investigated via the photoluminescence (PL) and Double-crystal X-ray rocking curve (DCRC). The temperature dependence of the energy band gap of the $ZnIn_2S_4$ obtained from the absorption spectra was well described by Varshni's relationship, $E_g(T)=2.9514\;eV-(7.24{\times}10^{-4}\;eV/K)T2/(T+489K)$. After the as-grown $ZnIn_2S_4$ single-crystal thin films was annealed in Zn-, S-, and In-atmospheres, the origin-of-point defects of the $ZnIn_2S_4$ single-crystal thin films were investigated via the photoluminescence (PL) at 10 K. The native defects of $V_{Zn}$, $V_S$, $Zn_{int}$, and $S_{int}$ obtained from the PL measurements were classified as donor or acceptor types. Additionally, it was concluded that a heat treatment in an S-atmosphere converted $ZnIn_2S_4$ single crystal thin films into optical p-type films. Moreover, it was confirmed that In in $ZnIn_2S_4$/GaAs did not form a native defects, as In in $ZnIn_2S_4$ single-crystal thin films existed in the form of stable bonds.

Fabrication and Characterization of TFT Gas Sensor with ZnO Nanorods Grown by Hydrothermal Synthesis (수열합성법으로 성장시킨 ZnO 나노 로드기반 TFT 가스 센서 제조 및 특성평가)

  • Jeong, Jun-Kyo;Yun, Ho-Jin;Yang, Seung-Dong;Park, Jeong-Hyun;Kim, Hyo-Jin;Lee, Ga-Won
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.4
    • /
    • pp.229-234
    • /
    • 2017
  • In this study, we fabricated a TFT gas sensor with ZnO nanorods grown by hydrothermal synthesis. The suggested devices were compared with the conventional ZnO film-type TFTs in terms of the gas-response properties and the electrical transfer characteristics. The ZnO seed layer is formed by atomic-layer deposition (ALD), and the precursors for the nanorods are zinc nitrate hexahydrate ($Zn(NO_3)_2{\cdot}6H_2O$) and hexamethylenetetramine ($(CH_2)6N_4$). When 15 ppm of NO gas was supplied in a gas chamber at $150^{\circ}C$ to analyze the sensing capability of the suggested devices, the sensitivity (S) was 4.5, showing that the nanorod-type devices respond sensitively to the external environment. These results can be explained by X-ray photoelectron spectroscopy (XPS) analysis, which showed that the oxygen deficiency of ZnO nanorods is higher than that of ZnO film, and confirms that the ZnO nanorod-type TFTs are advantageous for the fabrication of high-performance gas sensors.

Modeling of RF Sputtering Process for ZnO Thin film Deposition using Neural Network (신경회로망을 이용한 RF 스퍼터링 ZnO 박막 증착 프로세스 모델링)

  • Lim, Keun-Young;Lee, Sang-Keuk;Park, Choon-Bae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.7
    • /
    • pp.624-630
    • /
    • 2006
  • ZnO deposition parameters are not independent and have a nonlinear and complex property. To propose a method that could verify and predict the relations of process variables, neural network was used. At first, ZnO thin films were deposited by using RF magnetron sputtering process with various conditions. Si, GaAs, and Glass were used as substrates. The temperature, work pressure, and RF power of the substrate were $50\sim500^{\circ}C$, 15 mTorr, and $180\sim210W$, respectively : the purity of the target was ZnO 4 N. Structural properties of ZnO thin films were estimated by using XRD (0002) peak intensity. The structure of neural network was a form of 4-7-1 that have one hidden layer. In training a network, learning rate and momentum were selected as 0.2, 0.6 respectively. A backpropagation neural network were performed with XRD (0002) peak data. After training a network, the temperature of substrate was evaluated as the most important parameter by sensitivity analysis and response surface. As a result, neural network could capture nonlinear and complex relationships between process parameters and predict structural properties of ZnO thin films with a limited set of experiments.

Defects Evaluation of Blue Light Emitting Materials by Wet Etching and Transmission Electron Microscoppy

  • Hong, Soon-Ku;Kim, Bong-Jin
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1998.02a
    • /
    • pp.105-106
    • /
    • 1998
  • Evaluation of def3ects by etch-ppit formation was studied. A NaOH(30 mol%) etchant was found useful for etch-ppit developpment on ZnSe-based eppilayers grown on (001) gaAs. And a H3ppO4(85 mol%) was used in order to developp etch-ppits on GaN-base eppilayers grown on (0001) Al2O3 After etch-ppit formation on the surfsce. Transmission Electron Microscoppy(TEM) was cppmdicted. By etch-ppit developpment and TEM observation we could determine the defect typpes by etch-ppit configurfations and found origin of etch-ppit in the cse of ZnSe-based materials. Based uppon these results we can do defect identification by etch-ppit test simpply. In the case of GaN-based materials we could evaluate nanoppippe density. however high density of threading dislocations in GaN eppilayers were not revealed by etch-ppit developpment. Based uppon these results we can evaluate the nanoppippe density which difficult to evaluate using TEM beacause of its small size(diameter). And at ppresent status direct matching of etch-ppit density to dislocation density would make severe mistake.

  • PDF

나노 구조를 이용한 LED를 광추출 효율 개선

  • Bae, Ho-Jun;Choe, Pan-Ju;Choe, Yu-Min;Gang, Yong-Jin;Kim, Ja-Yeon;Gwon, Min-Gi
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.398-398
    • /
    • 2012
  • GaN 기반의 InGaN/GaN 다중양자우물(MQW) 구조의 발광다이오드는 다양한 파장대의 가시광을 방출하는 소자로 교통 신호등, 디스플레이, LCD backlight, 일반 조명까지 넓게 응용되고 있다. 그러나, 이러한 응용을 위해서는 전류 주입 효율, 내부양자효율, 광추출 효율을 개선하는 연구를 통한 발광 다이오드의 광효율을 높이는 연구가 필수적이다. 최근 많은 연구 개발에 의해 내부양자효율은 크게 향상 되었지만, 광추출 효율은 GaN (n=2.4)와 공기 (n=1)의 굴절률 차이에 의해 아직까지 낮은 실정이다. 광추출 효율을 개선하기 위해 반사전극, 전방향 반사전극, 표면 거칠기, Chip 성형 등의 기술이 제안되고 있다. 본 연구는 LED의 광추출 효율을 높이기 위해 다양한 모양의 Hydrothermal 법에 의해 성장된 ZnO 나노 구조 및 나노스피어 리소그라피를 통한 폴리스티렌 나노 구체의 주기적인 배열에 따른 특성을 연구하였다.

  • PDF

Effect of Deposition Temperature on Structural and Electrical Properties of Ga-Doped ZnO for Transparent Electrode of Thin Film Solar Cells (박막 태양전지용 투명 전극을 위한 Ga 도핑된 ZnO의 증착 온도에 따른 구조 및 전기 특성 변화)

  • Son, Chang-Sik
    • Korean Journal of Materials Research
    • /
    • v.21 no.3
    • /
    • pp.144-148
    • /
    • 2011
  • We have investigated the structural and optical properties of Ga-doped ZnO (GZO) thin films deposited by RF magnetron sputtering at various deposition temperatures from 100 to $500^{\circ}C$. All the GZO thin films are grown as a hexagonal wurtzite phase with highly c-axis preferred parameter. The structural and electrical properties are strongly related to deposition temperature. The grain size increases with the increasing deposition temperature up to $400^{\circ}C$ and then decreases at $500^{\circ}C$. The dependence of grain size on the deposition temperature results from the variation of thermal activation energy. The resistivity of GZO thin film decreases with the increasing deposition temperature up to $300^{\circ}C$ and then decreases up to $500^{\circ}C$. GZO thin film shows the lowest resistivity of $4.3{\times}10^{-4}\;{\Omega}cm$ and highest electron concentration of $1.0{\times}10^{21}\;cm^{-3}$ at $300^{\circ}C$. The mobility of GZO thin films increases with the increasing deposition temperature up to $400^{\circ}C$ and then decreases at $500^{\circ}C$. GZO thin film shows the highest resistivity of 14.1 $cm^2/Vs$. The transmittance of GZO thin films in the visible range is above 87% at all the deposition temperatures. GZO is a feasible transparent electrode for the application to the transparent electrode of thin film solar cells.

Fabrication and Characteristics of ZnO TFTs for Flexible Display using Low Temp Process (Flexible Display용 Low Temp Process를 이용한 ZnO TFT의 제작 및 특성 평가)

  • Kim, Young-Su;Kang, Min-Ho;Nam, Dong-Ho;Choi, Kang-Il;Lee, Hi-Deok;Lee, Ga-Won
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.10
    • /
    • pp.821-825
    • /
    • 2009
  • Recently, transparent ZnO-based TFTs have attracted much attention for flexible displays because they can be fabricated on plastic substrates at low temperature. We report the fabrication and characteristics of ZnO TFTs having different channel thicknesses deposited at low temperature. The ZnO films were deposited as active channel layer on $Si_3N_4/Ti/SiO_2/p-Si$ substrates by RF magnetron sputtering at $100^{\circ}C$ without additional annealing. Also, the ZnO thin films deposited at oxygen partial pressures of 40%. ZnO TFTs using a bottom-gate configuration were investigated. The $Si_3N_4$ film was deposited as gate insulator by PE-CVD at $150^{\circ}C$. All Processes were processed below $150^{\circ}C$ which is optimal temperature for flexible display and were used dry etching method. The fabricated devices have different threshold slop, field effect mobility and subthreshold slop according to channel thickness. This characteristics are related with ZnO crystal properties analyzed with XRD and SPM. Electrical characteristics of 60 nm ZnO TFT (W/L = $20\;{\mu}m/20\;{\mu}m$) exhibited a field-effect mobility of $0.26\;cm^2/Vs$, a threshold voltage of 8.3 V, a subthreshold slop of 2.2 V/decade, and a $I_{ON/OFF}$ ratio of $7.5\times10^2$.

Deposition Temperature and Annealing Temperature Dependent Structural and Electrical Properties of Ga-doped ZnO on SiC (퇴적 온도와 열처리에 따른 SiC에 퇴적된 Ga 도핑된 ZnO의 구조 및 전기적 특성)

  • Lee, Jung-Ho;Koo, Sang-Mo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.2
    • /
    • pp.121-124
    • /
    • 2012
  • The characteristics of Ga-doped zinc oxide (GZO) thin films deposited at different deposition temperatures (TS~250 to $550^{\circ}C$) on 4H-SiC have been investigated. Structural and electrical properties of GZO thin film on n-type 4H-SiC(0001) were investigated by using x-ray diffraction(XRD), atomic force microscopy(AFM), Hall effect measurement, barrier height from I-V curve and Auger electron spectroscopy(AES). XRD $2\theta$ scan shows GZO thin film has preferential orientation with c-axis perpendicular to SiC substrate surface. The lowest resistivity ($\sim1.9{\times}10^{-4}{\Omega}cm$) was observed for the GZO thin film deposited at $400^{\circ}C$. As deposition temperature increases, barrier height between GZO and SiC was increased. Whereas, resistivity of GZO thin films as well as barrier height between GZO and SiC were increased after annealing process in air atmosphere. It has been found that the c-axis oriented crystalline quality as well as the relative amount of activated Ga3+ ions and oxygen vacancy may affect the electrical properties of GZO films on SiC.