• 제목/요약/키워드: Zn-SOD

검색결과 292건 처리시간 0.028초

Transfer of SOD2 or NDP kinase 2 genes into purebred lines of petunia

  • Lee, Su-Young;Han, Bong-Hee;Noh, Eun-Woon;Kwak, Sang-Soo
    • Journal of Plant Biotechnology
    • /
    • 제36권2호
    • /
    • pp.144-148
    • /
    • 2009
  • The transfer of Mn-Superoxide Dismutase (SOD2) gene, complex gene (SA) of CuZnSOD and ascorbate peroxidase (APX), and NDP kinase 2 (NDPK2) gene into Korean 4 cultivars (cvs. Millenium White, Glory Blue, Glory Red, and Glory Purple) and 15 purebred lines of petunia was conducted using Agrobaterium-mediated technique. Two (Wongyo A2-16 and A2-36) of 15 purebred lines and one (cv. Glory Red) of 4 cultivars were effective for the transfer of SOD2 gene. The putative transgenic plants survived on the 2nd selection medium were 124. From PCR analysis, 118 (derived from 4 cultivars and 2 purebred lines) of 124 plants were confirmed to contain marker (npt II ) gene, while 58 of 118 plants did not have target genes. There were no plants with both npt II and SA genes. Twenty seven of 28 SOD2 transgenic plants were re-confirmed as transformants by Sothern analysis. SOD2 and NDPK2 genes were expressed in the transgenic petunias as the ratio of 77.8 to 100.0 % and 23.5%, respectively. T1 seeds were obtained from 36 acclimated transgenic plants (SOD2 34 plus NDPK2) in a glasshouse by self-pollination.

Deletion of Superoxide Dismutase Gene of Bombyx mori Nuclear Polyhedrosis Virus Affects Viral DNA Replication

  • Wang, Wenbing;Song, Zhixiu;Ji, Ping;Wu, Jun;Zhang, Zhifang;He, Jialu;Wu, Xiangfu
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • 제9권2호
    • /
    • pp.225-228
    • /
    • 2004
  • Superoxide dismutase (SOD) is an important enzyme which catalyzes superoxide radicals to hydrogen peroxide. A Cu, Zn sod-like gene was found in Bombyx mori nuclear polyhedrosis virus encoding 151 amino acids. To demonstrate its function, a recombinant virus named dsBmNPV with deleted sod gene was constructed. It was discovered that the sod gene was not essential for viral replication. Studies on growth of budded virus in BmN cells and superoxide dismutase and catalase activities in vivo after dsBmNPV infection showed that the titer of dsBmNPV decreased obviously comparing to wild type BmNPV, the sod gene was effective on genomic DNA replication of baculovirus, the peak of SOD activity of silkworm infected with wt-BmNPV appeared between 36 and 48 hrs post infection, and with dsBmNPV, it did not appear. And the changes of CAT activity after infection were similar to SOD activity.

손바닥 선인장 보충이 고지방식이 흰쥐의 간장, 신장 골격근에 지질괴산화와 SOD단백질 발현에 미치는 영향 (Effects of Opuntia humifusa Supplementation on Lipid Peroxidation and SOD Protein Expression in the Liver, Kidney, and Skeletal Muscle of Rats Fed a High-fat Diet)

  • 권대근;강준용;박진호;류승필;송영주
    • 생명과학회지
    • /
    • 제22권7호
    • /
    • pp.857-862
    • /
    • 2012
  • 본 연구는 안정 시 고지방식이 흰쥐의 신장, 간장 그리고 골격근에서 지질과산화와 SOD 단백질 발현에 손바닥 선인장 보충이 미치는 효과에 대하여 연구하였다. SD계 수컷 흰쥐 16마리를 무작위로 대조군(CG, n=8)과 실험군(EG, n=8)으로 분류하였다. 8주 동안 대조군은 고지방식이를 부하하였으며, 실험군은 5% 손바닥선인장을 보충식 이하였다. 본 실험결과, 간장과 신장의 MDA 농도는 EG군이 CG군에 비해 유의하게 낮게 나타났다(p<0.01). 또한 골격근의 MDA 농도도 EG군이 CG군에 비해 높은 경향이 나타났으나, 통계적으로 유의한 차이는 나타나지 않았다. Cu,Zn-SOD 단백질 발현은 신장에서 EG군이 CG군에 비해 유의하게 증가하였다(p<0.01). Mn-SOD 단백질 발현은 골격근에서 EG군이 CG군에 비해 유의하게 증가하였다(p<0.01). 이상의 결과로부터 손바닥선인장 보충이 고지방식이 흰쥐의 지질과산화 억제작용과 SOD단백질 발현이 기관 특이적인 반응의 항산화 효과가 있는 것으로 나타났다.

고선량 감마선을 조사한 벼에서 SOD isoenzyme들의 유전자 발현 및 효소활성 (Expression of Superoxide Dismutase Isoenzyme Genes and Enzyme Activities in Rice Irradiated with a High-Dose Gamma Ray)

  • 채효석;김진홍;정병엽;김재성;위승곤;백명화;조재영
    • 생명과학회지
    • /
    • 제16권2호
    • /
    • pp.180-185
    • /
    • 2006
  • 일품벼(Oryza sativa L. cv. Ilpoombye)에 고선량 감마선을 조사한 후 벼 잎의 생리적 손상과 항산화 효소인 superoxide dismutase (SOD)의 isoenzyme 수준에서의 유전자 발현 및 효소활성 변화와의 연관성을 조사하였다. 500 Gy의 감마선 조사는 24 h 이내에 벼 잎의 단백질, 엽록소, 그리고 카로테노이드의 함량을 유의적으로 감소시켰으며 특히 엽록소는 대조구에 비해 26% 이상 감소하였다. 반면에 SOD isoenzyme들의 유전자 발현은 감마선 조사 후 6 h부터 24 h까지는 전반적으로 대조구보다. 높게 유지되었으나 48 h부터 현저히 감소되어 72h에는 모든 isoenzyme들의 유전자 발현 이 대조구보다. 낮았다. 그러나 isoenzyme들의 효소활성은 조사구에서 일부 CuZn-SOD isoenzyme들의 경우 48 h까지 대조구보다. 약간 높았지만 72h에는 모두 현저히 감소하였다. 따라서 본 연구에 사용된 500 Gy의 고선량 감마선은 단백질, 엽록소, 그리고 카로테노이드 함량의 감소를 초래하며, 조사 후 초기단계에는 이러한 생리적 손상과 무관하게 일시 적으로 SOD isoenzyme들의 유전자 발현을 증가시키지만 72 h 이후에는 유전자 발현과 효소활성을 동시에 감소시키면서 산화스트레스에 의한 생리적 손상을 유도하는 것으로 생각된다.

Gene Expression Patterns of the Endogenous Antioxidant Enzymes in Linuron-Treated Rat Ventral Prostates after Castration

  • Yon, Jung-Min;Lin, Chunmei;Lee, Yoon-Bok;Lee, Beom-Jun;Yun, Young-Won;Nam, Sang-Yoon
    • 한국수정란이식학회지
    • /
    • 제27권2호
    • /
    • pp.101-105
    • /
    • 2012
  • Linuron is a pesticide with a weak anti-androgenic property, which impacts male reproductive organs. In this study, to clarify whether linuron affects the cellular antioxidant system of ventral prostate, gene expression patterns of the representative antioxidant enzymes such as glutathione peroxidase (GPx), selenoprotein P (SePP), and superoxide dismutase (SOD) were investigated in the rat ventral prostates exposed to linuron using real-time RT-PCR analyses. Sprague-Dawley rats castrated at 6 weeks old were treated with linuron (25, 50, or 100 mg/kg per oral) daily for 10 days after testosterone propionate administration (0.4 mg/kg) subcutaneously. As compared to normal control animals, mRNA levels of phospholipid hydroperoxide GPx (PHGPx), SePP, and Mn SOD significantly increased in the prostates exposed to linuron (25, 50, and 100 mg/kg). However, cytosolic GPx (100 mg/kg) and Cu/Zn SOD (25, 50, and 100 mg/kg) mRNA levels significantly decreased in the ventral prostates. These results indicate that linuron upregulates the expressions of PHGPx, SePP, and Mn SOD mRNAs, but down-regulates the expressions of cytosolic GPx and Cu/Zn SOD in rat prostates, suggesting that linuron may have dual effects in the cellular antioxidant system of prostate.

간장조직의 활성산소 및 그 제거효소에 미치는 뽕잎 추출물의 영향 (Effects of Mulberry (Morus alba L.) Leaf Extract on Oxygen Radicals and Their Scavenger Enzymes in Liver of SD Rats)

  • 최진호;김대익;박수현;김정민;백영호;이희삼;류강성
    • 생명과학회지
    • /
    • 제10권5호
    • /
    • pp.504-510
    • /
    • 2000
  • This study was designed to investigate the effects of mulberry (Morus alba L.) leaf extract (MLE) on oxygen radicals and their scavenger enzymes in liver membranes of rats. Sprague-Dawley (SD) male rats (160$\pm$10 g) were fed basic diet (control group), and experimental diets (MLE-100 and MLE-300 groups) added 100 and 300 mg/kg BW/day for 6 weeks. Hydroxyl radical (.OH) levels resulted in a significant decreases (15.2% and 18.1%, 5.6% and 8.0%, respectively) in liver mitochondria and microsomes could be not obtained. These are no significant differences in superoxide radical ($O_2$) levels of liver cytosol in MLE-100 and MLE-300 groups compared with control group. Lipid peroxide (LPO) levels were slightly decreased about 13.6% and 6.1% in liver mitochondria and microsomes of MLE-300 group compared with control group. Oxidized protein (OP) levels were remarkably decreased about 16.9% and 27.2% in liver microsomes only of MLE-100 and MLE-300 group compared with control group. Mn-SOD activities in liver mitochondria were remarkably increased (18.2% and 28.7%, respectively) in MLE-100 and MLE-300 groups, and Cu,Zn-SOD activities in liver cytosol were also significantly increased (11.3% and 20.2%, respectively) in MLE-100 and MLE-300 groups compared with control group. Mn-SOD activities in liver mitochondria were remarkably increased (18.2% and 28.7%, respectively) in MLE-100 and MLE-300 groups, and Cu,Zn-SOD activities in liver cytosol were also significantly increased (11.3% and 20.2%, respectively) in MLE-100 and MLE-300 groups compared with control group, but significant difference between GSHPx activities in liver cytosol could be not obtained. These results suggest that anti-aging effect of mulberry leaf extract (MLE) may play a pivotal role in attenuating a various age-related changes.

  • PDF

Calculation of the Absolute Rate of Human Cu/Zn Superoxide Dismutases from Atomic-Level Molecular Dynamics Simulations

  • Lee, Jin-Uk;Lee, Woo-Jin;Park, Hwang-Seo;Lee, Sang-Youb
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권3호
    • /
    • pp.862-868
    • /
    • 2012
  • Based on the recently derived general expression for the rates of diffusion-controlled reactions, we calculate the rates of dismutation of the superoxide anion radical catalyzed by Cu/Zn superoxide dismutases (SOD). This is the first attempt to calculate the absolute rates of diffusion-controlled enzyme reactions based on the atomiclevel molecular dynamics simulations. All solvent molecules are included explicitly and the effects of the structural flexibility of enzyme, especially those of side chain motions near the active site, are included in the present calculation. In addition, the actual mobility of the substrate molecule is taken into account, which may change as the molecule approaches the active site of enzyme from the bulk solution. The absolute value of the rate constant for the wild type SOD reaction obtained from MD simulation is shown to be in good agreement with the experimental value. The calculated reactivity of a mutant SOD is also in agreement with the experimental result.

흰쥐의 불용성 근위축에 당귀보혈탕이 미치는 영향과 그 기전에 관한 고찰 (The Protective Effects of Dangguibohyul-tang (Dangguibuxuetang) against Disuse Muscle Atrophy in Rats)

  • 김범회
    • 한방재활의학과학회지
    • /
    • 제27권4호
    • /
    • pp.1-9
    • /
    • 2017
  • Objectives Oxidative stress, in which antioxidant proteins and scavenger protection are overwhelmed by reactive oxygen species (ROS) production, is recognized as one of central causes of disuse muscle atrophy. In this study, the hypothesis that oral treatment with Dangguibohyul-tang (Dangguibuxuetang) could attenuate immobilization-induced skeletal muscle atrophy was tested. Methods The hindlimb immobilization was performed with casting tape to keep the left ankle joint in a fully extended position. The Rats in Dangguibohyul-tang treated group (DGBHT) (n=10) were orally administrated Dangguibohyul-tang water extract, and rats of Control group (n=10) were given with saline only. After 2 weeks of immobilization, the morphology of right and left gastrocnemius muscles in both DGBHT and Control groups were assessed by hematoxylin and eosin staining. Results Dangguibohyul-tang water extract represented the significant protective effects against the reductions of the left gastrocnemius muscles weight and average cross section area to compared with Control group. Moreover, the treatment with Dangguibohyul-tang extract significantly enhanced the Cu/Zn-SOD activities in gastrocnemius muscle compared with Control group. Conclusions Thses results suggest that Dangguibohyul-tang has protective effects against immobilization-induced muscle atrophy by increasing the Cu/Zn-SOD activities in gastrocnemius muscle.

형질전환 담배의 내건성 개선 (Improvement of Drought Tolerance in Transgenic Tobacco Plant)

  • 박용목
    • 한국환경과학회지
    • /
    • 제25권1호
    • /
    • pp.173-179
    • /
    • 2016
  • Leaf water and osmotic potential, chlorophyll content, photosynthetic rate, and electrolyte leakage were measured to evaluate tolerance to water stress in wild-type (WT) and transgenic tobacco plants (TR) expressing copper/zink superoxide dismutase (CuZnSOD) and ascorbate peroxidase (APX) in chloroplasts. Leaf water potential of both WT and TR plants decreased similarly under water stress condition. However, leaf osmotic potential of TR plants more negatively decreased in the process of dehydration, compared with WT plants, suggesting osmotic adjustment. Stomatal conductance (Gs) in WT plants markedly decreased from the Day 4 after withholding water, while that in TR plants retained relatively high values. Relatively low chlorophyll content and photosynthetic rate under water stress were shown in WT plants since $4^{th}$ day after treatment. In particular, damage indicated by electrolyte leakage during water stress was higher in WT plants than in TR plants. On the other hand, SOD and APX activity was remarkably higher in TR plants. These results indicate that transgenic tobacco plants expressing copper/zink superoxide dismutase (CuZnSOD) and ascorbate peroxidase (APX) in chloroplasts improve tolerance to water stress.

Genistein이 햄스터 난소세포의 항산화효소활성과 발현에 미치는 영향 (Effect of Genistein on Activity and Expression of Antioxidant Enzyme in Hamster ovary cells)

  • 김민혜;김안근
    • 약학회지
    • /
    • 제51권1호
    • /
    • pp.75-82
    • /
    • 2007
  • Reactive oxygen species (ROS) are produced in the metabolic process of oxygen in cells. The superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) in cells systemize the antioxidant enzymes to control the oxidative stress. Genistein is one of the isoflavonoids, and its role in controlling cellular oxidative stress is presently the active issue at question. In this study; we analyzed genistein-induced survival rates of the CHO-K1 cells, activities of antioxidant enzymes, ROS levels, and expression levels of antioxidant enzyme genes in order to investigate the effect of genistein on cellular ROS production and antioxidative systems in CHO-K1 cells. As results, the survival rate of cells was decreased as the dose of genistein increases (12.5${\sim}$200 ${\mu}$M). Genistein increased cellular ROS levels, while it reduced total SOD activities and the expression of CuZnSOD. In conclusion, we suggest that genistein may induce oxidative stress via down-regulation of SOD.