• Title/Summary/Keyword: Zn-Cr-X

Search Result 101, Processing Time 0.018 seconds

Surface morphology, Glossiness and Hardness of Zn-Cr and Zn-Cr-X ternary alloy Electrodeposits (고속도금된 Zn-Cr 및 Zn-Cr-X 3원합금 도금층의 표면조직, 광택도 및 경도)

  • 예길촌;김대영;서경훈
    • Journal of the Korean institute of surface engineering
    • /
    • v.36 no.5
    • /
    • pp.379-385
    • /
    • 2003
  • The surface morphology, the glossiness and the hardness of Zn-Cr and Zn-Cr-X(X:Co, Mn) alloy electrodeposits were investigated by using chloride bath with EDTA additive and flow cell system. The surface morphology of Zn-Cr alloy and Zn-Cr-Mn alloy changed from fine needle shape crystalline structure to colony structure of fine granular crystallites with increasing current density in the range of 20-100 $A/dm^2$. The surface morphology of Zn-Cr-Co alloy deposited from low Co concentration bath(2.5-10 g/$\ell$) was similar to that of Zn-Cr alloy, while that of Zn-Cr-Co alloy deposited from high cobalt concentration bath was fine granular crystalline structure in the same range of current density. The glossiness of Zn-Cr and Zn-Cr-Mn alloy increased noticeably with increasing current density, while that of Zn-Cr-Mn alloy decreased with increasing Mn concentration of bath in high current density region. The glossiness of Zn-Cr-Co alloy deposited from low Co concentration bath increased with current density while that of the alloy from high Co concentration bath decreased with increasing current density. The hardness of Zn-Cr and Zn-Cr-X alloy increased noticeably with current density.

Current Efficiency and Composit ion of Zn-Cr and Zn-Cr-X Ternary Alloy Electrodeposits (고속도금된 Zn-Cr 및 Zn-Cr-X 3원합금의 전류효율 및 조성)

  • Ye G.C.;Kim D.Y.;Ahn D.S.
    • Journal of the Korean institute of surface engineering
    • /
    • v.36 no.3
    • /
    • pp.256-262
    • /
    • 2003
  • The current efficiency and the composition of Zn-Cr and Zn-Cr-X (X : Co, Mn) alloy electrodeposits were investigated by using chloride bath with EDTA auditive and flow cell plating system. The current efficiency of Zn-Cr alloy decreased with increasing current density, while it increased with the content of Co and Mn of the Zn-Cr-X alloy bath in high current density region. The Cr content in Zn-Cr alloy increased from 1.4-2.7 to $28wt\%$ with increasing current density and the phase structure of the alloys changed from $\eta-Zn$ through $\eta-Zn+\gamma'-ZnCr\;to\;\gamma'-ZnCr$ with Increasing Cr content of the alloys. The Co content in Zn-Cr-Co alloys increased with Co content of the bath, while Cr content of the alloy increased or decreased in low current density region $(10-75A/dm^2)$ or high current density region $(75-100A/dm^2)$, respectively. $\gamma-ZnCo$ phase was formed in the Zn-Cr-Co alloy with above $9.0wt\%$ Co. The content of Mn and Cr in Zn-Cr-Mn alloys increased or decreased with the increase of current density in high current density region, respectively while Cr content of the alloy decreased noticeably with the increase of Mn content in the bath. Two phases of $\delta_1-ZnMn$ and $\gamma'-ZnCr$ were formed in the Zn-Cr-Mn alloy with above $8.6wt\%$ Mn.

Synthesis of CdxZn1-xS@MIL-101(Cr) Composite Catalysts for the Photodegradation of Methylene Blue

  • Yang, Shipeng;Peng, Siwei;Zhang, Chunhui;He, Xuwen;Cai, Yaqi
    • Nano
    • /
    • v.13 no.10
    • /
    • pp.1850118.1-1850118.17
    • /
    • 2018
  • Nanoparticles of the semiconductor catalyst $Cd_xZn_{1-x}S$ were embedded into the metal organic framework MIL-101(Cr) to obtain $Cd_xZn_{1-x}S@MIL-101$(Cr) nanocomposites. These materials not only possess high surface areas and mesopores but also show good utilization of light energy. The ultraviolet-visible diffuse reflectance patterns of $Cd_xZn_{1-x}S@MIL-101$(Cr) nanocomposites showed that $Cd_{0.8}Zn_{0.2}S@MIL-101$(Cr) possessed good visible light response ability among the synthesized nanocomposites. The photocatalytic performance of the $Cd_xZn_{1-x}S@MIL-101$(Cr) nanocomposites were tested via degradation and mineralization of methylene blue in neutral water solution under light irradiation using a 300W xenon lamp. As a result, using $Cd_{0.8}Zn_{0.2}S@MIL-101$(Cr) as a catalyst, 99.2% of methylene blue was mineralized within 30 min. Due to the synergistic effect of adsorption by the MIL-101(Cr) component and photocatalytic degradation provided by the $Cd_{0.8}Zn_{0.2}S$ component, the $Cd_{0.8}Zn_{0.2}S@MIL-101$(Cr) catalyst displayed superior photocatalytic performance relative to $Cd_{0.8}Zn_{0.2}S$ and MIL-101(Cr). Furthermore, $Cd_{0.8}Zn_{0.2}S@MIL-101$(Cr) possessed excellent stability during photodegradation and exhibited good reusability. The remarkable photocatalytic performance of $Cd_{0.8}Zn_{0.2}S@MIL-101$(Cr) is likely due to the effective transfer of electrons and holes at the heterojunction interfaces.

Effect of Trace Metallic Additives of Mg-Fe-X on Microstructure and Properties of Zn Electrodeposits (아연도금층의 조직 및 물성에 미치는 미량금속원소(Mg-Fe-X)의 복합첨가의 영향(II))

  • 예길촌;김대영;안덕수
    • Journal of the Korean institute of surface engineering
    • /
    • v.37 no.2
    • /
    • pp.99-109
    • /
    • 2004
  • The effect of trace metallic additives on microstructure, glossiness and hardness of Zinc electrodeposits was investigated by using sulfate bath and flow cell system. The preferred orientation of Zn deposits with Mg-Fe additives was (10$\ell$)+(002) mixed texture, while that of Zn deposits with Mg-Fe-Cr additives was ( $10\ell$). The preferred orientation of Zn deposits with Mg-Fe-X(X:Ni,Co) additives changed from ($10\ell$)+(002) to ($10\ell$) with increasing Mg additive from 5 to 10 g/$\ell$. The surface morphology of the Zinc deposits was closely related to the preferred orientation of the deposits. The glossiness of Zn deposits with Mg-Fe additives was similar to that of pure Zn deposit. The glossiness of Zn deposits with Mg-Fe-X(X:Ni,Cr) additives was lower than that of Zn deposits with Mg-Fe additives, while that of Zn deposits with Mg-Fe-Co additives was higher than that of Zn-Mg-Fe deposits. The hardness of Zn deposits with Mg-Fe-X(Ni,Co,Cr) increased with current density and amount of Mg additive. Hardness of Zn deposits was decreased and increased in comparison with Zn-Mg-Fe deposits for Mg-Fe-Co and Mg-Fe-Cr additives, respectively.

The Study on Mössbauer Spectroscopy of Zn1-xFexO (Zn1-xFexO의 뫼스바우어 분광학적 연구)

  • Kim, S.J.;Lee, S.R.;Park, C.S.;Kim, E.C.;Joh, Y.G.;Kim, D.H.
    • Journal of the Korean Magnetics Society
    • /
    • v.18 no.2
    • /
    • pp.75-78
    • /
    • 2008
  • $AB_2X_4$(A, B=Transition Metal, X=O, S, Se) are cubic spinel normal ferrimagnets, in which M ions occupy the tetrahedral sites and Cr ions occupy the octahedral sites. Recently, they have been investigated for behaviour of B site ions and A-B interaction. Polycrystalline $[Co_{0.9}Zn_{0.1}]_A[Cr_{1.98}{^{57}Fe_{0.02}}]_BO_4$ compound was prepared by wet-chemical process. The ferrimagnetic transition was observed around 90K. $M\"{o}ssbauer$ absorption spectra at 4.2K show that the well-developed two sextets are superposed with small difference in hyperfine fields($H_{hf}$). The hyperfine fields of $CoCr_{1.98}{^{57}Fe_{0.02}}O_4$ and $Co_{0.9}Zn_{0.1}Cr_{1.98}{^{57}Fe_{0.02}}O_4$ were determined to be 488, 478 kOe and 486, 468 kOe, respectively. We notice that the one of the magnetic hyperfine field values changes with Zn ion substitution. These results suggest the incommensurate states and spin-reorientation temperature($T_S=18K$) changes with Zn ions substitution below spin-reorientation temperature($T_S=28K$) of $CoCr_{1.98}{^{57}Fe_{0.02}}O_4$

Magnetic and CMR Properties of Sulphospinel ZnxFe1-xCr2S4 (Spinel계 유화물 ZnxFe1-xCr2S4의 CMR 특성과 자기적 성질)

  • Park, Jae-Yun;Bak, Yong-Hwan;Kim, Kwang-Joo
    • Journal of the Korean Magnetics Society
    • /
    • v.15 no.2
    • /
    • pp.137-141
    • /
    • 2005
  • The CMR properties and magnetic properties of sulphospinels $Zn_xFe_{1-x}Cr_2S_4$ have been explored by X-ray diffraction, magnetoresistance measurement, and $M\ddot{o}ssbauer$ spectroscopy. The crystal structures in the range of x=0.05, 0.1, 0.2 are cubic at room temperature. Magnetoresistance measurement indicates that these system is semiconducting below about 160 K. The temperature of maximum magnetoresistance is almost consistent with Curie temperature. The Zn substitutions for Fe occur to increase the Jahn-Teller relaxation and the electric quadrupole shift. CMR properties could be explained with Jahn-Teller effect, and half-metallic electronic structure, which is different from both the double exchange interactions of manganite La-Ca-Mn-O system and the triple exchange interactions of chalcogenide $Cu_xFe_{1-x}Cr_2S_4$.

Photoluminescence Properties of $Zn_{2-x-y}SiO_4:Mn_x,\;M_y$ Phosphors ($Zn_{2-x-y}SiO_4:Mn_x,\;M_y$계 형광체의 발광특성)

  • Cho, Bong Hyun;Sohn, Kee Sun;Park, Hee Dong;Chang, Hyun Ju;Hwang, Taek Sung
    • Journal of the Korean Chemical Society
    • /
    • v.43 no.2
    • /
    • pp.206-212
    • /
    • 1999
  • The main objective of the present investigation is to improve the photoluminescent performance of existing $Zn_2SiO_4:Mn$ phosphors by introducing a new co-dopant. The co-doping effect of Mg and/or Cr upon emission intensity and decay time was studied in the present investigation. The co-dopants incorporated into the $Zn_2SiO_4:Mn$ phosphors are believed to alter the internal energy state so that the change in emission intensity and decay time can be expected. Both Mg and Cr ions have a favourable influence on photoluminescence prpperties, for example, the Mg ion enhances the intensity of manganese green emission and the Cr ion shortens the decay time. The enhancement in emission intensity of $Zn_2SiO_4:Mn,\;Mg$ phosphors was interpreted by taking into account the result from the DV-X${\alpha}$ embedded cluster calculation. On the other hand, the energy transfer between Mn and Cr ions was found to be responsible for the shortening of decay time in$Zn_2SiO_4:Mn,\;Cr$ phosphors.

  • PDF

The Study of Hyperfine Fields for Co0.9Zn0.1Cr1.9857Fe0.02O4 (Co0.9Zn0.1Cr1.9857Fe0.02O4 물질의 초미세자기장 연구)

  • Choi, Kang-Ryong;Kim, Sam-Jin;Kim, Chul-Sung
    • Journal of the Korean Magnetics Society
    • /
    • v.18 no.1
    • /
    • pp.39-42
    • /
    • 2008
  • [ $AB_2X_4$ ](A, B=Transition Metal, X=O, S, Se) are cubic spinel normal ferrimagnets, in which M ions occupy the tetrahedral sites and Cr ions occupy the octahedral sites. Recently, they have been investigated for behaviour of B site ions and A-B interaction. Polycrystalline $[Co_{0.9}Zn_{0.1}]_A[Cr_{1.98}{^{57}Fe_{0.02}}]_BO_4$ compound was prepared by wet-chemical process. The ferrimagnetic transition was observed around 90K. $M\"{o}ssbauer$ absorption spectra at 4.2K show that the well-developed two sextets are superposed with small difference in hyperfine fields($H_{hf}$). The hyperfine fields of $CoCr_{1.98}{^{57}Fe_{0.02}}O_4$ and $Co_{0.9}Zn_{0.1}Cr_{1.98}{^{57}Fe_{0.02}}O_4$ were determined to be 488, 478 kOe and 486, 468 kOe, respectively. We notice that the one of the magnetic hyperfine field values changes with Zn ion substitution. These results suggest the incommensurate states and spin-reorientation temperature($T_S=18K$) changes with Zn ions substitution below spin-reorientation temperature($T_S=28K$) of $CoCr_{1.98}{^{57}Fe_{0.02}}O_4$