• Title/Summary/Keyword: Zn-Al Alloy

Search Result 267, Processing Time 0.025 seconds

The Study on Fabrication and Sound Absorption Properties of Al-Zn-Mg-Cu Alloy Foams (Al-Zn-Mg-Cu 발포합금 제조 및 흡음특성에 관한 연구)

  • Jeong, Seung-Reung;Hur, Bo-Young
    • Journal of Korea Foundry Society
    • /
    • v.31 no.3
    • /
    • pp.145-151
    • /
    • 2011
  • Metallic foam has been known as a functional material which can be used for absorption properties of energy and sound. The unique characteristics of Al foam of mechanical, acoustic, thermal properties depend on density, cell size distribution and cell size, and these characteristics expected to apply industry field. Al-Zn-Mg-Cu alloy foams was fabricated by following process; firstly melting the Al alloy, thickening process of addition of Ca granule to increased of viscosity, foaming process of addition of titanium hydride powder to make the pores, holding in the furnace to form of cooling down to the room temperature. Metal foams with various porosity level were manufactured by change the foaming temperature. Compressive strength of the Al alloy foams was 2 times higher at 88% porosity and 1.2 times higher at 92% porosity than pure Al foams. It's sound and vibration absorption coefficient were higher than pure Al foams and with increasing porosity.

A study of galvanic characteristics of aluminium alloy anode in the Al-Zn-In-Mg system made of the low purity aluminium ingot (저순도 Al지금을 사용한 Al-Zn-In-Mg계 Al합금 유전양극의 특성에 관한 연구)

  • 김원녕;김기준;김영대
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.9 no.3
    • /
    • pp.240-249
    • /
    • 1985
  • This paper presents the results of the galvanic anode's characteristicsin the Al-Zn-In-Mg and Al-Zn-In-Mg system anodes used aluminium ingot of low purity, 99.5% grade. The results of thses performance tests are as follows: 1) Zn, In and Mg are an available elements to improve the performance of Aluminium alloy anodes. 2) When the range of zinc content in the Al-Zn-In-Mg system anode is 2-5% the more zinc content, the more improve the anode performance. 3) Al-Zn-In-Mg system anode requires a long term over 50 days for the performance test. 4) The composition of Al-Zn-In-Mg system anode which shows the most excellent performance is Al-(2-3%) Zn-(0.02%) In-(1.0%) Mg. 5) When the Al-Zn-In-Mg system anode is annealed for an hour in 500 to 550 .deg. C, the anode performance is improved. 6) The lower average potential and the better corrosion pattern in the Al-Zn-Mg, Al-Zn-In and Al-Zn-In-Mg system anodes, the more current efficiency is improved.

  • PDF

Effects of Cooling Rates of Coating Layer on Microstructures and Corrosion Behaviors of Zn-Al-Mg Alloy Coated Steel Sheets (Zn-Al-Mg 합금도금강판의 도금 층 냉각속도 제어에 따른 미세조직 및 부식거동 분석)

  • Lee, Jae-Won;Kim, Sung Jin
    • Corrosion Science and Technology
    • /
    • v.21 no.3
    • /
    • pp.221-229
    • /
    • 2022
  • To understand effects of cooling rates of coating layer on microstructures and corrosion behaviors of hot-dip alloy coated steel sheets (Zn-5%Al-2%Mg) in a neutral aqueous condition with chloride ion, a range of experimental and analytical methods were used in this study. Results showed that a faster cooling rate during solidification decreased the fraction of primary Zn, and increased the fraction of Zn-Al phase. In addition, interlamellar spacing became refined under a faster cooling rate. These modifications of the coating structure had higher open circuit potentials (OCP) with smaller anodic and cathodic current densities in the electrochemical potentiodynamic polarization. Surface analyses after a salt spray test showed that the increase in the Zn-Al phase in the coating formed under a faster cooling rate might have contributed to the formation of simonkolleite (Zn5(OH)8Cl2·H2O) and hydrotalcite (ZnAl2(OH)6Cl2·H2O) with a protective nature on the corroded outer surface, thus delaying the formation of red rust.

Effects of Cold Rolling Parameters on Sagging Behavior for Three Layer Al-Si/Al-Mn(Zn)/Al-Si Brazing Sheets

  • S.H. Lee;J.S. Yoon;M.S. Kim;D. Jung
    • Transactions of Materials Processing
    • /
    • v.8 no.3
    • /
    • pp.227-227
    • /
    • 1999
  • The effects of intermediate annealing (IA) and the final cold rolling (CR) condition on the microstructure and sagging resistance during brazing were investigated using three layer clad sheets composed of the Al-7.5 wt.%Si alloy (filler, thickness: 10 ㎛)/Al-1.3 wt.%Mn based alloy (core, 80㎛)/Al-7.5 wt.%Si alloy (filler, 10㎛). Also, the effect of 1.2∼2 wt.% Zn addition into the core on the sagging resistance of the clad sheets was determined. It was revealed that all the clad sheets fabricated by the optimum condition (IA at 690 K and CR to 20∼45%) show excellent sagging resistance with a limited erosion due to the formation of a coarsely recrystallized grain structure in the core during brazing. It was also revealed that the recrystallization behavior of the Al-1.3 wt.%Mn based alloy is hardly affected by the addition of 1.2-2 wt.%Zn during the brazing cycle. Therefore, the sagging resistance of the clad sheets is found to be governed not by the Zn content added in the A1-1.3wt.%Mn based core, but by the intermediate annealing and final cold rolling condition.

Effect of Alloying Element Addition on the Microstructure, Tensile and Impact Toughness of the Modified Al-6.5Si Alloy (개량 Al-6.5Si 합금의 미세조직, 인장 및 충격 인성에 미치는 합금 원소 첨가의 영향)

  • Park, T.H.;Baek, M.S.;Yoon, S.I.;Kim, J.P.;Lee, K.A.
    • Transactions of Materials Processing
    • /
    • v.29 no.3
    • /
    • pp.135-143
    • /
    • 2020
  • Low-cost alloying elements were added to a modified Al-6.5Si alloy and its microstructure, tensile and impact toughness properties were investigated. The alloying elements added were Mg, Zn, and Cu, and two kinds of alloy A (Mg:0.5, Zn:1, Cu:1.5 wt.%) and alloy B (Mg:2, Zn:1.5, Cu:2 wt.%) were prepared. In the as-cast Al-6.5Si alloys, Si phases were distributed at the dendrite interfaces, and Al2Cu, Mg2Si, Al6 (Fe,Mn) and Al5 (Fe,Mn)Si precipitates were also observed. The size and fraction of casting defects were measured to be higher for alloy A than for alloy B. The secondary dendrite arm spacing of alloy B was finer than that of alloy A. It was confirmed by the JMatPro S/W that the cooling rate of alloy B could be more rapid than alloy A. The alloy B had higher hardness and strength compared to the values of alloy A. However, the alloy A showed better impact toughness than alloy B. Based on the above results, the deformation mechanism of Al-6.5Si alloy and the improving method for mechanical properties were also discussed.

Work Softening Behavior of Zn-15%Al alloy (Zn-15%Al 합금의 가공연화 거동)

  • Jun, Joong-Hwan;Seong, Ki-Duk;Kim, Jeong-Min;Kim, Ki-Tae;Jung, Woon-Jae
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.18 no.1
    • /
    • pp.18-23
    • /
    • 2005
  • Effect of cold rolling on microstructural changes has been investigated for a Zn-15%Al alloy to elucidate the reason for its work softening behavior. Fully annealed microstructure of the Zn-15%Al alloy is characterized by ${\eta}$ grains and (${\eta}+{\alpha}$) lamellar colonies, where ${\eta}$ and ${\alpha}$ are Zn-rich HCP and Al-rich FCC phases, respectively. The hardness decreases continuously with increasing cold rolling degree, exhibiting work softening behavior. It is revealed that during the cold rolling, (${\eta}+{\alpha}$) lamellar colonies gradually change into equiaxed ${\eta}$ and ${\alpha}$ grains due to dynamic recrystallization at room temperature, while pre-existing ${\eta}$ grains are only deformed without recrystallization. Furthermore, cold rolling causes the precipitation of dissolved Al solutes in ${\eta}$ grains. In view of these results, change of (${\eta}+{\alpha}$) phases from lamellar to equiaxed morphology, which results in structural softness and increase in equiaxed ${\eta}/{\alpha}$ grain boundaries with higher mobility, and deterioration of solution hardening by precipitation of Al solutes from ${\eta}$ grains, are thought to contribute to the work softening of Zn-15%Al alloy.

Study on the Microstructure Evolution during Extrusion of Zn-Al-Mg alloy (Zn-Al-Mg 합금의 압출 시 미세조직 변화에 관한 연구)

  • W. G. Seo;K. Thool;H. N. Lee;D. J. Yang;S. G. Park;S. H. Choi
    • Transactions of Materials Processing
    • /
    • v.32 no.6
    • /
    • pp.344-351
    • /
    • 2023
  • The use of Zn-Al-Mg alloy coatings for enhancing the corrosion resistance of steel sheets is gaining prominence over traditional Zn coatings. There is a growing demand for the development of thermal spray wires made from Zn-Al-Mg alloys, as a replacement for the existing wires produced using Al and Zn. This is particularly crucial to secure corrosion resistance and durability in the damaged areas of coated steel sheets caused by deformation and welding. This study focuses on the casting and extrusion processes of Zn-2Al-1Mg alloy for the fabrication of such spray wires and analyzes the changes in microstructure during the extrusion process. The Zn-2Al-1Mg alloy, cast in molds, was subjected to a heat treatment at 250 ℃ for 3 hours prior to extrusion. The extrusion process was carried out by heating both the material and the mold up to 300 ℃. Microstructural analysis was conducted using FE-SEM and EDS to differentiate each phase. The mechanical properties of the cast specimen were evaluated through compression tests at temperatures ranging from 200 to 300 ℃, with strain rates of 0.1 to 5 sec-1. Vickers hardness testing was utilized to assess the inhomogeneity of mechanical properties in the radial direction of the extruded material. Finite Element Analysis (FEA) was employed to understand the inhomogeneity in stress and strain distribution during extrusion, which aids in understanding the impact of heterogeneous deformation on the microstructure during the process.

Formation of $Al_2O_3$-Ceramics by Reactive Infiltration of Al-alloy into Insulation Fiber Board (Al-합금의 단열섬유판 반응침투에 의한 $Al_2O_3$-세라믹스의 형성)

  • 김일수
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.5
    • /
    • pp.483-490
    • /
    • 1997
  • Al2O3/metal composites were fabricated by oxidation and reaction of molten Al-alloy into two types of commercial Al2O3-SiO2 fibrous insulation board. The growth rate, composition and microstructure of these materials were described. An AlZnMg(7075) alloy was selected as a parent alloy. Mixed polycrystalline fiber and glass phase fiber were used as a filler. The growth surface of an alloy was covered with and without SiO2. SiO2 powder was employed as a surface dopant to aid initial oxidation of Al-alloy. Al-alloy, SiO2, fiber block and growth inhibitor CaSiO3 were packed sequentially in a alumina crucible and oxidized in air at temperature range 90$0^{\circ}C$ to 120$0^{\circ}C$. The growth rate of composite layer was calculated by measuring the mass increasement(g) per unit surface($\textrm{cm}^2$). XRD and optical microscope were used to investigate the composition and phase of composites. The composite grown at 120$0^{\circ}C$ and with SiO2 dopant showed rapid growth rate. The growth behavior differed a little depending on the types of fiber used. The composites consist of $\alpha$-Al2O3, Al, Si and pore. The composite grown at 100$0^{\circ}C$ exhibited better microstructure compared to that grown at 120$0^{\circ}C$.

  • PDF

Effect of Al Alloy Content on Processing of Reaction-Bonded Al2O3 Ceramics Using Al Alloy Powder

  • Lee, Hyun-Kwuon
    • Korean Journal of Materials Research
    • /
    • v.25 no.5
    • /
    • pp.215-220
    • /
    • 2015
  • The effect of Al content on the processing of reaction-bonded $Al_2O_3$ (RBAO) ceramics using 40v/o ~ 80v/o Al-Zn-Mg alloy powder was studied in order to improve traditional RBAO ceramic processes that use ~ 40v/o pure Al powder. The influence of high Al content in starting $Al_2O_3$-Al alloy powder mixtures on its particulate characteristics, reaction-bonding, microstructure, physical and mechanical properties was revealed. Starting $Al_2O_3$-Al alloy powder mixtures with 40v/o ~ 80v/o Al alloy powder were milled, reaction-bonded, post-sintered, and characterized. With an increasing Al alloy content, the milling efficiency of Al alloy powder was lowered, resulting in a larger particle size after milling. However, in spite of the larger particle size of Al alloy powder, the oxidation, i.e., reaction-bonding, of the Al alloy was successfully completed via solid and liquid state oxidation, in which the activation energy of the oxidation was nearly the same regardless of Al alloy content. After reaction-bonding and post-sintering at $1600^{\circ}C$, RBAO ceramics from 80v/o Al alloy content showed a relative density of ~97% and a flexural strength of 251 MPa compared to ~ 96% and 353 MPa for RBAO ceramics from 40v/o Al alloy content, respectively. The lower flexural strength at 80v/o Al alloy content was due to the weak spinel phase that formed from Zn, Mg alloying elements in Al.

Investigations on electron beam weldability of AlZnMgCu0.5 alloys (AlZnMgCu0.5 합금의 Electron Beam 용접성에 관한 연구)

  • 배석천
    • Journal of Welding and Joining
    • /
    • v.15 no.4
    • /
    • pp.166-177
    • /
    • 1997
  • The high strength AlZnMgCu0.5 alloy is a light metal with good age hardenability, and has a high tensile and yielding strength. Therefore, it can be used for structures requiring high speciple strength. Even though high strength AlZnMgCu alloy has good mechanical properties, it has a lot of problems in TIG and MIG welding processes. Since lots of high heat absorption is introduced into the weldment during TIG and MIG processes, the microstructural variation and hot cracks take place in heat affected zone. Therefore, the mechanical properties of high strength AlZnMgCu0.5 alloy can be degraded in weldment and heat affected zone. Welding process utilizing high density heat source such as electron beam should be developed to reduce pore and hot cracking, whichare usually accompanied by MIG and TIG welding processes. In this work, electron beam welding process were used with or without AlMg4.5Mn as filler material to avoid the degradation of mechanical properties. Mechanical and metallurgical characteristics were also studied in electron beam weldment and heat affected zone. Moreover hot cracking mechanism was also investigated.

  • PDF