• 제목/요약/키워드: Zn doped

검색결과 1,009건 처리시간 0.033초

Power 및 temperature에 의한 증착률 변화와 Al-doped ZnO의 특성변화에 관한 연구

  • 안시현;박철민;조재현;장경수;백경현;이준신
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제40회 동계학술대회 초록집
    • /
    • pp.107-107
    • /
    • 2011
  • 오늘 날 transparent conductive oxide는 다양한 분야에서 활용되고 있다. 최근에는 태양전지 분야에서도 많이 활용되고 있으며, 초기에는 transmittance 및 낮은 sheet resistance 특성을 가지는 ITO가 많이 활용되었지만 thin film solar cell와 같이 hydrogenation 공정에 약한 ITO보다는 Al-doped ZnO가 사용되기 시작하면서 많은 연구가 진행되고 있다. 본 연구에서는 thin film solar cell 및 silicon heterojunction solar cell에 적용 가능한 Al-doped ZnO에 관한 연구로써 a-Si:H의 Si-H bonds에 영향을 주지 않는 낮은 영역의 substrate temperature와 power로 Al-doped ZnO를 형성하고 상기 parameter에 따른 Al-doped ZnO의 특성 변화에 대해서 분석하였다. 특히 substrate temperature가 변화할수록 carrier concentration 및 sheet resistance가 많은 변화를 보였으며 이로 인하여 transmittance 특성이 온도에 따라 좋아지다가 너무 높은 온도에서는 오히려 좋지 않게 되었다. 이는 너무 높은 carrier concentration은 free carrier absorption에 의해 transmittance 특성을 오히려 좋지 않게 한다. 우리는 본 연구를 통해 92.677% (450 nm), 90.309% (545 nm), 94.333% (800 nm)의 transmittance를 얻을 수 있었다.

  • PDF

RF Sputtering으로 증착한 어닐링 온도 변화에 따른 Ga-doped ZnO 박막 특성 연구 (A Study on Properties of Ga-doped ZnO Thin Films for Annealing Temperature Change by RF Sputtering Method)

  • 한승익;김홍배
    • 반도체디스플레이기술학회지
    • /
    • 제15권2호
    • /
    • pp.11-15
    • /
    • 2016
  • This paper, Ga-doped ZnO (GZO) thin films which were deposited on Corning glass substrate using an magnetron sputtering deposition technology and then the post deposition annealing process was conducted for 30 minutes at different temperature of 100, 200, 300, and $400^{\circ}C$, respectively. So as to investigate the properties for the relevant the Concentration and Oxygen Vacancy with Annealing temperature of Ga-doped ZnO thin films by RF Sputtering method. The Carrier concentration is enhanced as annealing temperature decreases, and also the oxygen vacancy concentration is enhanced as annealing temperature decreased. Oxygen vacancy will decrease along with Carrier concentration. This change in Carrier concentration is related to changes in oxygen vacancy concentration. The figure of merit obtained in this study means that Ga-doped ZnO films which annealed at $400^{\circ}C$ have the lowest Carrier concentration and Oxygen vacancy, which have the highest optoelectrical performance that it could be used as a transparent electrode.

스퍼터링 방법으로 성장시킨 나노구조의 Ga 농도 변화에 따른 형상 변화

  • 김영이;우창호;조형균
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2009년도 추계학술발표대회
    • /
    • pp.23.1-23.1
    • /
    • 2009
  • ZnO is of great interest for various technological applications ranging from optoelectronics to chemical sensors because of its superior emission, electronic, and chemical properties. In addition, vertically well-aligned ZnO nanorods on large areas with good optical and structural properties are of special interest for the fabrication of electronic and optical nanodevices. To date, several approaches have been proposed for the growth of one-dimensional (1D) ZnO nanostructunres. Several groups have been reported the MOCVD growth of ZnO nanorods with no metal catalysts at $400^{\circ}C$, and fabricated a well-aligned ZnO nanorod array on a PLD prepared ZnO film by using a catalyst-free method. It has been suggested that the synthesis of ZnO nanowires using a template-less/surfactant-free aqueous method. However, despite being a well-established and cost-effective method of thin film deposition, the use of magnetrons puttering to grow ZnO nanorods has not been reported yet. Additionally,magnetron sputtering has the dvantage of producing highly oriented ZnO film sat a relatively low process temperature. Currently, more effort has been concentrated on the synthesis of 1D ZnO nanostructures doped with various metal elements (Al, In, Ga, etc.) to obtain nanostructures with high quality,improved emission properties, and high conductance in functional oxide semiconductors. Among these dopants, Ga-doped ZnO has demonstrated substantial advantages over Al-doped ZnO, including greater resistant to oxidation. Since the covalent bond length of Ga-O ($1.92\;{\AA}$) is nearly equal to that of Zn-O ($1.97\;{\AA}$), high electron mobility and low electrical resistivity are also expected in the Ga-doped ZnO. In this article, we report the successful growth of Ga-doped ZnO nanorods on c-Sapphire substrate without metal catalysts by magnetrons puttering and our investigations of their structural, optical, and field emission properties.

  • PDF

Characterization of F- and Al-codoped ZnO Transparent Conducting Thin Film prepared by Sol-Gel Spin Coating Method

  • Nam, Gil Mo;Kwon, Myoung Seok
    • 한국세라믹학회지
    • /
    • 제53권3호
    • /
    • pp.338-342
    • /
    • 2016
  • ZnO thin film co-doped with F and Al was prepared on a glass substrate via simple non-alkoxide sol-gel spin coating. For a fixed F concentration, the addition of Al co-dopant was shown to reduce the resistivity mainly due to an increase in electrical carrier density compared with ZnO doped with F only, especially after the second post-heat-treatment in a reducing environment. There was no effective positive contribution to the reduction in resistivity due to the mobility enhancement by the addition of Al co-dopant. Optical transmittance of the ZnO thin film co-doped with F and Al in the visible light domain was shown to be higher than that of the ZnO thin film doped with F only.

자성반도체 Co-doped ZnO 다결정계의 구조 및 강자성 특성 (The studies of Structure and Ferromagnetism on Co doped ZnO powders)

  • 박정환;장현명;김민규
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2003년도 춘계학술발표강연 및 논문개요집
    • /
    • pp.176-176
    • /
    • 2003
  • 강자성 반도체(DMS)는 반도체에 전이금속을 doping함으로써 반도체의 전자 수송 특성과 전이 금속 이온에 의한 자기적 특성을 동시에 발현할 수 있도록 설계된 물질로서 '스핀 전자공학'의 구현을 위해 현재 활발히 연구되고 있는 분야이다. 특히 높은 전기 전도도와 투명 광 특성을 가지는 ZnO계는 전이금속을 첨가 할 경우 상온에서도 강자성 특성을 보일 것이라는 연구가 발표 된 이후 큰 주목을 받고 있으며, 실제로 Tc가 상온 이상인 결과들이 최근 발표되고 있다. 그러나 PLD에 의해 증착 된 Co-doped ZnO 경우 강자성 물성의 재현성이 아주 낮은 것으로 알려져 있는 둥 강자성 발현의 기원이 아직도 명확히 규명되지 못한 상태이다. 이에 본 연구에서는 Co-doped ZnO 계의 강자성 발현의 기원을 밝히고자 고상 반응법을 이용하여 다결정계를 제조한 후 X-선 회절 분석과 Raman 분광법을 이용하여 제2차상의 존재 유무 및 Co 이온의 치환 정도를 분석하였다. 다음으로 방사광 EXAFS 분석을 행하여 ZnO내에서의 Co 이온의 원자가 상태를 분석하고, PPMS를 사용 M-T curve를 측정/분석함으로써 강자성 발현의 기원을 규명하고자 하였다.

  • PDF

Red-shift of the photoluminescence peak of N-doped ZnO phosphors

  • Kim, Jun-Kwan;Lim, Jung-Wook;Kim, Hyun-Tak;Yun, Sun-Jin
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2008년도 International Meeting on Information Display
    • /
    • pp.895-897
    • /
    • 2008
  • ZnO films were fabricated using rf-magnetron sputter deposition process with different $N_2$ ambient. N-content in N-doped ZnO films was less than 1%. The wavelength of the highest intensity PL peak of N-doped ZnO was shifted to higher wavelength with increasing $N_2$ flow rate in the deposition ambient. These results indicated that the optical property of ZnO was significantly affected by the defect level created by doping with a very small amount of N.

  • PDF

ZnO:P 박막의 레이저 어닐링 연구 (Laser annealing on ZnO:P thin films)

  • 장현우;강홍성;김건희;임성훈;이상렬
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2005년도 추계학술대회 논문집 Vol.18
    • /
    • pp.51-52
    • /
    • 2005
  • Phosphorus doped ZnO thin films on (001) $Al_2O_3$ substrate have been prepared by a pulsed laser deposition (PLD) technique using a Nd:YAG laser. After deposition, phosphorus doped ZnO thin films have been annealed in vacuum, air, nitrogen, and oxygen ambients using pulsed Nd:YAG laser. We report the electrical properties of phosphorus doped ZnO thin films with the variation of the laser annealing conditions for the applications of optoelectronic devices.

  • PDF

수직 배향된 Ga-doped ZnO nanorods의 합성과 전기적 특성 (Ga-doped ZnO nanorod arrays grown by thermal evaporation and their electrical behavior)

  • 안철현;한원석;공보현;김영이;조형균;김준제;김홍승
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 추계학술대회 논문집 Vol.21
    • /
    • pp.414-414
    • /
    • 2008
  • Vertically well-aligned Ga-doped ZnO nanorods with different Ga contents were grown by thermal evaporation on a ZnO template. The Ga-doped ZnO nanorods synthesized with 50 wt % Ga with respect to the Zn content showed maximum compressive stress relative to the ZnO template, which led to a rapid growth rate along the c-axis due to the rapid release of stored strain energy. A further increase in the Ga content improved the conductivity of the nanorods due to the substitutional incorporation of Ga atoms in the Zn sites based on a decrease in lattice spacing. The p-n diode structure with Ga-doped ZnO nanorods, as a n-type, displayed a distinct white light luminescence from the side-view of the device, showing weak ultraviolet and various deep-level emissions.

  • PDF

Work function variation of doped ZnO nanorods by Kelvin probe force microscopy

  • Ben, Chu Van;Hong, Min-Chi;Yang, Woo-Chul
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제40회 동계학술대회 초록집
    • /
    • pp.446-446
    • /
    • 2011
  • One dimensional (1-D) structures of ZnO nanorods are promising elements for future optoelectronic devices. However there are still many obstacles in fabricating high-quality p-type ZnO up to now. In addition, it is limited to measure the degree of the doping concentration and carrier transport of the doped 1-D ZnO with conventional methods such as Hall measurement. Here we demonstrate the measurement of the electronic properties of p- and n-doped ZnO nanorods by the Kelvin probe force microscopy (KPFM). Vertically aligned ZnO nanorods with intrinsic n-doped, As-doped p-type, and p-n junction were grown by vapor phase epitaxy (VPE). Individual nanowires were then transferred onto Au films deposited on Si substrates. The morphology and surface potentials were measured simultaneously by the KPFM. The work function of the individual nanorods was estimated by comparing with that of gold film as a reference, and the doping concentration of each ZnO nanorods was deduced. Our KPFM results show that the average work function difference between the p-type and n-type regions of p-n junction ZnO nanorod is about ~85meV. This value is in good agreement with the difference in the work function between As-doped p- and n-type ZnO nanorods (96meV) measured with the same conditions. This value is smaller than the expected values estimated from the energy band diagram. However it is explained in terms of surface state and surface band bending.

  • PDF

염료감응형 태양전지의 저비용 상대전극을 위한 N-doped ZnO 나노입자-탄소나노섬유 복합체 (N-Doped ZnO Nanoparticle-Carbon Nanofiber Composites for Use as Low-Cost Counter Electrode in Dye-Sensitized Solar Cells)

  • 안하림;안효진
    • 한국재료학회지
    • /
    • 제24권10호
    • /
    • pp.565-571
    • /
    • 2014
  • Nitrogen-doped ZnO nanoparticle-carbon nanofiber composites were prepared using electrospinning. As the relative amounts of N-doped ZnO nanoparticles in the composites were controlled to levels of 3.4, 9.6, and 13.8 wt%, the morphological, structural, and chemical properties of the composites were characterized by means of field-emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). In particular, the carbon nanofiber composites containing 13.8 wt% N-doped ZnO nanoparticles exhibited superior catalytic properties, making them suitable for use as counter electrodes in dye-sensitized solar cells (DSSCs). This result can be attributed to the enhanced surface roughness of the composites, which offers sites for $I_3{^-}$ ion reductions and the formation of Zn3N2 phases that facilitate electron transfer. Therefore, DSSCs fabricated with 13.8 wt% N-doped ZnO nanoparticle-carbon nanofiber composites showed high current density ($16.3mA/cm^2$), high fill factor (57.8%), and excellent power-conversion efficiency (6.69%); at the same time, these DSSCs displayed power-conversion efficiency almost identical to that of DSSCs fabricated with a pure Pt counter electrode (6.57%).