• Title/Summary/Keyword: Zn concentration

Search Result 1,860, Processing Time 0.032 seconds

Toxicity Assessment of the Soil by Bioassay Following a Long-Term Application of Sewage Sludge (생물검정법을 이용한 하수슬러지 장기연용 토양의 독성평가)

  • Nam, Jae-Jak;Lee, Seung-Hwan;Kwon, Soon-Ik;Hong, Suk-Young;Lim, Dong-Kyu;Koh, Mun-Hwan;Song, Beom-Hun
    • Korean Journal of Environmental Agriculture
    • /
    • v.23 no.4
    • /
    • pp.258-263
    • /
    • 2004
  • Bioassay was employed to assess toxicity of soil which had been treated with sewage sludges for seven years. The $Microtox^{(R)}$ and root elongation test of lettuce (Lactuca Sativa.) elucidated that the intensity of soil toxicity was closely related with the types and amount of sewage sludges applied. Both bioassay methods proved to be useful in an assessment of soil toxicity and were consistent to some extent with the conventional chemical analysis methods. $EC_{50}$ values resulted from $Microtox^{(R)}$ were highly correlated with concentration of heavy metals in soils amended with sewage sludges : Cu ($r^2=\;0.86^{**}$), Cr ($r^2\;=\;0.84^{**}$), Ni ($r^2\;=\;0.83^{**}$), and Zn ($r^2\;=\;0.69^{**}$). This demonstrated that both bioassay techniques could be employed as tools for soil toxicity assessment when the soil was exposed to solid wastes such as sewage sludge.

Physical and Chemical Properties of Cover Soils of waste Landfills in Kyonggi-Do Area (경기도 지역 쓰레기 매립지 복토층 토양의 이화학성)

  • 이상모;김기대;이은주;김판기;이군택
    • Journal of Soil and Groundwater Environment
    • /
    • v.7 no.1
    • /
    • pp.53-62
    • /
    • 2002
  • The physical and chemical properties of cover soils of 10 waste landfill sites in Kyonggi-Do area, where social circumstances at present forces to consider the reuse of landfill, were investigated to provide the informations of soil environment which are necessary to establish the appropriate ecological restoration plan of waste landfills. The pH and electrical conductivity of soils were higher in landfills sites than in reference sites (area around landfill sites), indicating the salt accumulation in surface soil. However, total-N and organic matter contents were lower in landfills sites than in reference sites. In landfill sites, the total-N and plant available-P contents were less than 0.15% and 20mg/kg, respectively. Exchangeable cations (K, Ca, Mg and Na) and heavy metal (Cd, Cr, Cu, Fe, Mn, Ni, Pb and Zn) contents varied between the landfill sites, but were higher in landfills sites than in reference sites. The major exchangeable cation of soil was Ca. Heavy metal contents were much lower than the critical concentration which phytotoxicity is considered to be possible and the standard for agricultural land of Korean Soil Environmental Preservation Act. Therefore, the proper soil management plan to increase the soil fertility is recommended for the ecological restoration of landfill using natural or artificial vegetation.

Growth of Chrysanthemum Cultivars as Affected by Silicon Source and Application Method

  • Sivanesan, Iyyakkannu;Son, Moon Sook;Soundararajan, Prabhakaran;Jeong, Byoung Ryong
    • Horticultural Science & Technology
    • /
    • v.31 no.5
    • /
    • pp.544-551
    • /
    • 2013
  • The effect of different silicon (Si) sources and methods of application on the growth of two chrysanthemum cultivars grown in a soilless substrate was investigated. Rooted terminal cuttings of Dendranthema grandiflorum 'Lemmon Eye' and 'Pink Eye' were transplanted into pots containing a coir-based substrate. A nutrient solution containing 0 or $50mg{\cdot}L^{-1}$ Si from calcium silicate ($CaSiO_3$), potassium silicate ($K_2SiO_3$) or sodium silicate ($Na_2SiO_3$) was supplied once a day through an ebb-and-flood sub irrigation system. A foliar spray of 0 or $50mg{\cdot}L^{-1}$ Si was applied twice a week. Cultivar and application method had a significant effect on plant height. Cultivar, application method, and Si source had a significant effect on plant width. Of the three Si sources studied, $K_2SiO_3$ was found to be the best for the increasing number of flowers, followed by $CaSiO_3$ and $Na_2SiO_3$. In both the cultivars, sub irrigational supply of Si developed necrotic lesions in the older leaves at the beginning of the flowering stage as compared to the control and foliar spray of Si. Cultivar, application method, Si source, and their interactions had significant influence on leaf tissue concentrations of calcium (Ca), potassium (K), phosphorus (P), magnesium (Mg), sulfur (S), sodium (Na), boron (B), iron (Fe), and zinc (Zn). The addition of Si to the nutrient solution decreased leaf tissue concentrations of Ca, Mg, S, Na, B, Cu, Fe, and Mn in both cultivars. The greatest Si concentration in leaf tissue was found in 'Lemmon Eye' ($1420{\mu}g{\cdot}g^{-1}$) and 'Pink Eye' ($1683{\mu}g{\cdot}g^{-1}$) when $K_2SiO_3$ was applied through a sub irrigation system and by foliar spray, respectively.

Comparison of Physicochemical Properties and Antioxidative Activities of Sunflower Sprout According to Germination Day (발아일수에 따른 해바라기 싹의 이화학적 특성 및 항산화성 비교)

  • Roh, Kyung-Rea;Ko, Seong-Hee;Kim, Chul-Jai
    • Journal of the Korean Society of Food Culture
    • /
    • v.27 no.1
    • /
    • pp.66-74
    • /
    • 2012
  • It is well known that sunflower (SF) sprout has more beneficial effects than SF seed due to increased levels of phytochemical components such as vitamins, total phenolics, and isoflavones during germination. This study investigated the physicochemical properties and antioxidative activities of SF seed during both germination and cultivation. In a proximate analysis, the water content of SF groat was 9.17% and then increased to 15.32% on the 11th day after seeding. On a dry weight basis, crude fat content decreased while the contents of carbohydrates, crude protein, and crude ash increased. As cultivation proceeded, the contents of minerals were in decreasing order of K, Mg, Ca, Na, Zn, Fe, Mn, and Cu, in which SF sprout cultivated for 9 or 11 days contained the highest mineral contents. Though vitamin C was not detected on SF groat, the content of vitamin C continuously increased up to the 5th day of cultivation and then decreased gradually. Vitamin E content in SF groat was higher than that in SF sprout. It was also found that the vitamin E content in SF sprout was the highest on the 5th day of cultivation. Daidzin was not detected in SF groat, but its concentration reached a maximum on the 5th day of cultivation in SF sprouts. Furthermore, higher amounts of daidzein were observed on the 3rd, 5th, and 9th days of cultivation. The highest total isoflavone content was observed on either the 3rd or 5th day of cultivation. The highest content of total phenolics was observed on the 5th of cultivation. When DPPH radical and peroxyl radical scavenging activities of SF sprout were measured in order to measure antioxidant efficacy, it was found that 5 day-cultivated SF sprout had the highest scavenging activities. In conclusion, SF sprout cultivated for 9 or 11 days was found to be a good source of minerals. Furthermore, the fifth-day after seeding was the optimal time for the production of SF sprout with effective natural antioxidant activity and high amounts of functional components such as vitamins, total phenolics, and isoflavones.

Bioaccumulation of Heavy Metals in Intestine of Nacella concinna (남극삿갓조개 (Nacella concinna) 장의 중금속 축적에 관한 연구)

  • Lee, Yong-Seok;Jo, Yong-Hun;Han, Yeon-Soo;Kho, Weon-Gyu;Ahn, In-Young;Jeong, Kye-Heon
    • The Korean Journal of Malacology
    • /
    • v.22 no.1 s.35
    • /
    • pp.87-95
    • /
    • 2006
  • Immunohistochemical and ultrastuructural experiments were conducted to find out heavy metal accumulation in the intestine of an Antarctic gastropod Nacella concinna. According to the immune-histochemical experiment the apical cytoplasm of the intestinal epithelium showed positive reactions to anti-MT (rnotallothionein), indicating the presence of MT, a metal-binding protein involved in metal detoxifying process. In the transmission electron microscopic observations, the epithelial cells of the intestine exposed to Cd for over three hours showed irregular nuclear membranes, secretory granules, and probable metal granules. According to the SEM-EDS experiments on the intestine, concentration of Pb in the apical epithelium was in inverse proportion to that in the intestinal lumen. After exposing to Cd for over three days, S was rapidly reduced. Ca and Zn were rapidly increased after exposure to Cd. These elements are supposed to be concerned with the MT-reaction in the intestine. laken together, these data suggest that N. concinna could be used as a potential biomarker species.

  • PDF

Physicochemical Properties and Antioxidant Activities in Infrared Dried Peach Processed by Different Pretreatment (전처리조건에 따른 적외선건조 복숭아의 이화학적 특성 및 항산화효과)

  • Kim, Jae-Won;Youn, Kwang-Sup
    • Food Science and Preservation
    • /
    • v.19 no.6
    • /
    • pp.849-857
    • /
    • 2012
  • This study was conducted to determine the effects of the pretreatment and infrared drying methods on the physicochemical properties and antioxidant activities of dried peaches. The pretreatment methods were the 30 min treatment of NaCl, vitamin C, and soluble Ca (1:5 w/v immersion ratio), and leaving them untreated before infrared drying at $55^{\circ}C$ for 20 hr. The moisture content was lower in the pre-treated group and was significantly lowest in the 0.3% NaCl. The titratable acidity and soluble solid content and acid ratio (SS/TA) were high for the vitamin C and soluble Ca groups. The browning degree and cutting strength of the dried peach were lower in the pre-treated group. The total sugar content in the 0.3% NaCl group was significantly higher than those in the vitamin C and soluble Ca groups. The Ca contents were more effective in the soluble Ca treated group and increased with higher Ca concentration. The sensory evaluation results indicated that the organoleptic scores for the overall preference were higher in the 0.1% vitamin C treated group. The phenolic compounds and ABTS radical scavenging ability were high for the 0.1% vitamin C and 0.1% soluble Ca treated groups. These results suggest that pretreatment affected the qualities of the dried peaches, showing that infrared drying can be applied to the production of high quality dried peach products.

Chemical Composition and Antioxidant Activity of Korean Buckwheat (Fagopyrum esculentum) Pollen Grain Collected by Honey Bee, Apis mellifera (메밀화분의 성분 특성 및 항산화 활성)

  • Hong, In-Pyo;Woo, Soon-Ok;Han, Sang-Mi;Lee, Mi-Kyoung
    • Journal of Apiculture
    • /
    • v.32 no.3
    • /
    • pp.261-268
    • /
    • 2017
  • We evaluated the nutritional composition including proximate, amino acid, vitamin, minerals, and the antioxidant activity of buckwheat (Fagopyrum esculentum) pollen grains collected by Apis mellifera bees, to be used as a species of forage plant with Quercus acutissima (acorn) and Actinidia arguta pollen grains. The content of crude protein and fat were found 14.43% and 5.67%, respectively. Eighteen amino acids from buckwheat pollen were found, including 8 essential amino acids. The predominant amino acids were glutamic acid, aspartic acid and lysine, accounting for about 42.7% of total free amino acids. The concentration of vitamin C was the highest value of 13.7 mg/100g, followed by $B_3$ (niacin) and $B_1$ among the detected vitamins. The predominant minerals were potassium (1197.95mg/100g), followed by phosphorus (962.77mg/100g) and magnesium (535.42mg/100g), whereas copper, zinc and manganese were detected as minor elements. Antioxidant activity and total phenolic content accounted for 8.1% at $500{\mu}g/ml$ extract and $2.25{\mu}g/mg$, respectively.

Stabilization of Two Mine Drainage Treated Sludges for the As and Heavy Metal Contaminated Soils (오염토양 특성별 광산배수처리슬러지의 비소 및 중금속 안정화)

  • Tak, Hyunji;Jeon, Soyoung;Lee, Minhee
    • Journal of Soil and Groundwater Environment
    • /
    • v.27 no.4
    • /
    • pp.10-21
    • /
    • 2022
  • In the South Korea, 47% of abandoned mines are suffering from the mining hazards such as the mine drainage (MD), the mine tailings and the waste rocks. Among them the mine drainage which has a low pH and the high concentration of heavy metals can directly contaminate rivers or soil and cause serious damages to human health. The natural/artificial treatment facilities by using neutralizers and coagulants for the mine drainage have been operated in domestic and most of heavy metals in mind drainage are precipitated and removed in the form of metal hydroxide, alumino-silicate or carbonate, generating a large amount of mine drainage treated sludge ('MDS' hereafter) by-product. The MDS has a large surface area and many functional groups, showing high efficiency on the fixation of heavy metals. The purpose of this study is to develop a ingenious heavy metal stabilizer that can effectively stabilize arsenic (As) and heavy metals in soil by recycling the MDS (two types of MDS: the acid mine drainage treated sludge (MMDS) and the coal mine drainage treated sludge (CMDS)). Various analyses, toxicity evaluations, and leaching reduction batch experiments were performed to identify the characteristics of MDS as the stabilizer for soils contaminated with As and heavy metals. As a result of batch experiments, the Pb stabilization efficiency of both of MDSs for soil A was higher than 90% and their Zn stabilization efficiencies were higher than 70%. In the case of soil B and C, which were contaminated with As, their As stabilization efficiencies were higher than 80%. Experimental results suggested that both of MDSs could be successfully applied for the As and heavy metal contaminated soil as the soil stabilizer, because of their low unit price and high stabilization efficiency for As and hevry metals.

Concentration of heavy metals in shellfishes and health risk assessment from Korean coastal areas

  • Ka Jeong Lee;Eun Hye Kang;Minchul Yoon;Mi Ra Jo;Hong Sik Yu;Kwang Tae Son
    • Fisheries and Aquatic Sciences
    • /
    • v.25 no.12
    • /
    • pp.626-636
    • /
    • 2022
  • Shellfish are exoskeleton-bearing aquatic invertebrates that consume various organic and inorganic substances floating in seawater through filter feeding. Heavy metals are known as absorbed and accumulated in seawater. Some of the toxic heavy metals are highly accumulated in seawater, and exposure to them can cause a variety of risks to the human body. Since Koreans like to eat seafood, they are more likely to be exposed to contaminated seafood with heavy metals. In this study, nine types of heavy metals were analyzed on ten different shellfish species in the coastal area of South Korea. The risk assessment was also done on shellfish in which heavy metals were detected. Zinc (Zn) and copper (Cu) were identified at an average of 56.7 mg/kg (6.70 to 466 mg/kg) and 13.2 mg/kg (0.064 to 143 mg/kg), respectively. Lead (Pb) average of 0.208 mg/kg (0.000750 to 1.02 mg/kg), cadmium (Cd) average of 0.454 mg/kg (0.0388 to 1.56 mg/kg) and mercury (Hg) average of 0.0266 mg/kg (0.00548 to 0.174 mg/kg) were identified. Additionally, arsenic (As), chromium (Cr), nickel (Ni), and silver (Ag) were also identified as average concentrations of 4.02 (0.460 to 15.0 mg/kg), 0.167 (< limit of quantification [LOQ] to 0.820 mg/kg), 0.281 (< LOQ to 1.46 mg/kg), and 0.158 mg/kg (< LOQ to 1.15 mg/kg). The result indicates that the monitoring results of heavy metals in most shellfish satisfied the Korean standard. However, Pb and Cd have exceeded some foreign standards, such as the United States and the EU. The permissible human exposure calculated using the heavy metal intake and detection amount was lower than the Joint FAO/WHO Expert Committee on Food Additives human safety standard, and the risk of heavy metals from shellfish consumption was at an acceptable level.

Change of Cast Amount and Pollutant Contents before and after the Eating of the Organic Waste and Upland Soil with Earthworms, Eisenia andrei and Amynthas agrestis (유기성폐기물과 밭토양에 대한 붉은줄지렁이와 밭지렁이의 섭식 전후의 분변토 발생량 및 오염물질의 함량 변화)

  • Na, Young-Eun
    • Korean Journal of Environmental Agriculture
    • /
    • v.34 no.2
    • /
    • pp.91-97
    • /
    • 2015
  • BACKGROUND: Earthworms are essential detritus feeders that play a vital role in the process of decomposition of organic matter and soil metabolism. The complex process of partial breakdown of organic matter and mixing with mucous and gut microbial flora in the form of earthworm cast results in the reduction of the toxicity. This study focused on the change of cast amount and pollutant contents before and after the eating of the organic waste and upland soil with the two species of earthworm. METHODS AND RESULTS: The two species of earthworms were compared to the cast production. In the upland soil material, the daily amount of worm's cast was 1.42 g in E. andrei and 0.40 g in A. agrestis. In the organic waste material, the cast of E. andrei was 0.78~0.83 g and the cast of A. agrestis. have not been collected because all earthworms died after the treatment. The heavy metals treated in the upland soil were evaluated the impact of the worm excretion. With the E. andrei, the cast production was decreased 0.1~0.8 times in zinc, 0.2~0.5 times in copper, and 0.1~0.7 times in cadmium compared to the control treatment according to the levels of concentration. With A. agrestis, the cast amount was decreased 0.3~1.1 times in zinc, 0.2~0.3 times in copper, and 0.1~2.1 times in cadmium, respectively. The changes of pollutant contents before and after the eating of the organic wastes with E. andrei were studied. In the treatment of the Alcohol Fermentation Processing Sludge and the Fruit Juice Processing Sludge, heavy metal content of the cast was increased 0.7~53.3% compared to the sludge materials. PAHs contents were decreased 50.1% in the cast of the Alcohol Fermentation Processing Sludge and 36.6% in the cast of the Fruit Juice Processing Sludge, respectively. CONCLUSION: In conclusion, although the A. agrestis was bigger than E. andrei in size and weight, the cast amount of A. agrestis was small. The two species of earthworm was less excretion with high concentration of heavy metals. While the heavy metals such as zinc, copper, and cadmium were considerably accumulated in the cast, the total compounds, PAHs were fairly decomposed. There results would provide us for restoring contaminated soil and cleaning organic wastes.