• Title/Summary/Keyword: Zn Mine

Search Result 305, Processing Time 0.033 seconds

Environmental contamination and geochemical behaviour of heavy metals around the abandoned Songcheon Au-Ag mine, Korea

  • Lim Hye-sook;Lee Jin-Soo;Chon Hyo-Teak;Sager Manfred
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.544-547
    • /
    • 2003
  • The objective of this study is to investigate the contamination levels and dispersion patterns of arsenic and heavy metals and to estimate the bioaccessible fraction of the metals in soil and plant samples in the vicinity of the abandoned Songcheon Au-Ag mine. Tailings, soils, plants (Chinese cabbage, red pepper, soybean, radish, sesame leaves, green onion, lettuce, potato leaves, angelica and groundsel) and waters were collected around the mine site. After appropriate preparation, all samples were analyzed for As, Cd, Cu, Pb and Zn by ICP-AES and ICP-MS. Elevated levels of As and heavy metals were found in tailings. Mean concentrations of As in agricultural soils were higher than the permissible level. Especially, maximum level of As in farmland soil was 513 mg/kg. The highest concentrations of As and Zn were found in Chinese cabbage (6.7 mg/kg and 359 mg/kg, respectively). Concentrations of As, Cd, and Zn in most stream waters which are used for drinking water around this mine area were higher than the permissible levels regulated in Korea. Maximum levels of As, Cd and Zn in stream waters were 0.78 mg/L, 0.19 mg/L and 5.4 mg/L, respectively. These results indicate that mine tailings can be the main contamination sources of As and heavy metals in the soil-water system in the mine area. The average of estimated bioaccessible fraction of As in farmland soils were $3.7\%$ (in simulated stomach) and $10.8\%$ (in simulated small intestine). The highest value of bioaccessible fraction of metal in farmland soils was $46.5\%$ for Cd.

  • PDF

Environmental Effects on the Hydrologic and Ecologic System around the Wasted Ore Dump of the Moak Gold-Silver Mine (모악 금·은광산에 방치된 폐석이 주변 수계 및 생태계에 미치는 환경적 영향)

  • Na, Choon-Ki;Jeon, Seo-Ryeong
    • Economic and Environmental Geology
    • /
    • v.28 no.3
    • /
    • pp.221-229
    • /
    • 1995
  • The heavy metal contents and their dispersion patterns in stream water, stream sediments, land plants and aquatic larvae collected from the hydrologic system flowing via the wasted ore dump of the Moak Au-Ag mine were investigated systematically in order to evaluate the environmental impacts of the abandoned metal mine. The heavy metal content increases abruptly in the vicinity of the wasted ore dump, then attenuated with increasing distance from the mine area. Attenuating rates were stream water > stream sediments > land plants > aquatic larvae. On the other hand, the cumulative content of heavy metals was stream sediments >aquatic larvae > land plants > stream water. Each element tends to be enriched selectively according to media; Zn > Cu > Cd > Pb in stream water, Zn > Pb > Cu > Cd in stream sediments and land plants, and Zn > Cu > Pb > Cd in aquatic larvae. These results show that the degree of enrichment and dispersion of pollutant extruded from the wasted ore dump are different according to elements and media, and that the circulation system of materials of each medium is different. The heavy metals, especially Cu, Pb and Zn, of polluted downstream sediments occur in high proportions of Fe-Mn oxides and organic bounded forms, which show high potential of a secondary pollution source. The content of heavy metals and their dispersion patterns in stream sediments are different from those of ten years ago; pollution levels of heavy metals were degraded in various ranges. The Zn and Cu-polluted areas were widened whereas Fe and Pb-polluted areas were reduced. In crops collected from the farm lands in downstream area, the pepper was more concentrated in all heavy metal than rice. The pepper showed some contaminated level in Cu(9.7ppm) and Zn(149ppm), and the rice in Zn(90ppm). However, both crops showed no significant level in Cd(<0.2ppm) and Pb(<0.5ppm).

  • PDF

Assessment of Human Bioavailability Quotient for the Heavy Metal in Paddy Soils Below Part of the Closed Metalliferous Mine (폐금속광산 하류 논토양의 중금속에 대한 인체흡수도 평가)

  • Kim, Min-Kyeong;Hong, Sung-Chang;Kim, Myung-Hyun;Choi, Soon-Kun;Lee, Jong-Sik;So, Kyu-Ho;Jung, Goo-Bok
    • Korean Journal of Environmental Agriculture
    • /
    • v.34 no.3
    • /
    • pp.161-167
    • /
    • 2015
  • BACKGROUND: For the heavy metal cotamination sites, it is very important to estimate the human bioavailability quotients for heavy metals in paddy soils released from mine tailings, which is a major source of contamination in Korea, and to assess the human health risks of heavy metals. METHODS AND RESULTS: This experiment was carried out to investigate the human bioavailability quotient of the heavy metals in paddy soils below part of the closed metalliferous mine. For estimating the human bioavailability quotients for heavy metals, 30 paddy soils below part of the closed mine were collected, and analyzed for Cd, Cu, Pb, Zn, and As using simple bioavailability extraction test(SBET). The quantities of Cd, Cu, Pb, Zn and As extracted from paddy soils below part of the mine by using the SBET analysis were 28.1, 17.3, 34.1, 14.6 and 2.3% respectively. Specially, the maximum values of Cd, Pb and Zn were 73.3, 81.5 and 58.1% of human bioavailability quotient, respectively, and varied considerably among the sampling sites. The human bioavailability quotient of Cd, Cu, Pb and Zn in soils near the closed mine showed significant positive correlation among soil pH value, O.M. and Ex. Ca. contents, while it correlated negatively between soil Ex. K and Ex. Mg contents in paddy soils. Also, its of Cd, Cu, Pb and Zn in paddy soils showed significant positive correlation with 0.1M HCl extractable and total contents, while in soils, it correlated negatively with As content in soil near the closed mine. CONCLUSION: The results of the simple bioavailability extraction test (SBET) indicate that regular ingestion of soils by the local population could be closed a potential health threat due to long-term heavy metals exposure in these mine areas.

Environmental Contamination and Bioavailability Assessment of Heavy Metals in the Vicinity of the Dogok Au-Ag-Cu Mine (도곡(Au-Ag-Cu)광산 주변지역의 중금속 원소들의 환경오염특성 및 생체흡수도 평가)

  • Lee Sung-Eun;Lee Jin-soo;Chon Hyo-Taek
    • Economic and Environmental Geology
    • /
    • v.38 no.2 s.171
    • /
    • pp.135-142
    • /
    • 2005
  • In order to investigate the contamination level and seasonal variation of heavy metals and evaluate the bioavailability of toxic elements, environmental geochemical survey was undertaken at the Dogok Au-Ag-Cu mine area. The main pollution sources in the area were suggested as tailings, mine waste materials and mine water. Elevated levels of $140{\cal}mg/{\cal}kg{\;}As,{\;}107{\cal}mg/{\cal}kg{\;}Cd,{\;} 3017{\cal}mg/{\cal}kg{\;}Cu,{\;}12926{\cal}mg/{\cal}kg{\;}Pb,{\;}9094{\cal}mg/{\cal}kg$ Zn(before rainy season) were found in mine tailings. Concentrations of heavy metals in farmland soils exceeded normal level in nature soil (Bowen, 1979). The highest level of heavy metals was found in water samples near the mine tailing dumps regarded as a main pollution source of toxic elements in the area. These concentrations decreased to downstream due to the effect of dilution. From the results of sequential extraction analyses for tailings and soils, non-residual forms of heavy metals were found, which indicate the contamination to be progressing by continuing weathering and oxidation. Cadmium and Zn would be of the highest mobility in all samples. The bioavailability of Cd, Cu, Zn and As using SBET analysis from paddy soils was $53.3{\%},{\;}46.5{\%},{\;}41.0{\%}$ and $37.0\%$, respectively. The farmland soil sample(S3) showed the highest total concentration and bioavailability of heavy metals.

Geochemical transport and water-sediment partitioning of heavy metals in acid mine drainage, Kwangyang Au-Ag mine area, Korea

  • Jung, Hun-Bok;Yun, Seong-Taek;Kwon, Jang-Soon;Lee, Pyeong-Koo
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.09a
    • /
    • pp.409-412
    • /
    • 2003
  • Total extraction of stream sediments in the Kwangyang mine area shows their significant pollution with most trace metals such as Cr, Co, Fe, Pb, Cu, Ni, Zn and Cd, due to sulfide oxidation in waste dumps. Calculations of enrichment factor shows that Chonam-ri creek sediments are more severely contaminated than Sagok-ri sediments. Using the weak acid (0.1N HCl) extraction and sequential extraction techniques, the transport and sediment-water partitioning of heavy metals in mine drainage were examined for contaminated sediments in the Chonam-ri and Sagok-ri creeks of the Kwangyang Au-Ag mine area. Calculated distribution coefficient (Kd) generally decreases in the order of Pb $\geq$Al > Cu > Mn > Zn > Co > Ni $\geq$ Cd. Sequential extraction of Chonam-ri creek sediments shows that among non-residual fractions the Fe-Mn oxide fraction is most abundant for most of the metals. This indicates that precipitation of Fe hydroxides plays an important role in regulating heavy metal concentrations in water, as shown by field observations.

  • PDF

Assessment of the Heavy Metal Contamination in Paddy Soils Below Part of the Closed Metalliferous Mine (폐금속광산 하류 논토양의 중금속 오염도 평가)

  • Kim, Min-Kyeong;Hong, Sung-Chang;Kim, Myung-Hyun;Choi, Soon-Kun;Lee, Jong-Sik;So, Kyu-Ho;Jung, Goo-Bok
    • Korean Journal of Environmental Agriculture
    • /
    • v.34 no.1
    • /
    • pp.6-13
    • /
    • 2015
  • BACKGROUND: Most of the tailings have been left without any management in abandoned metalliferous mines and have become the main source of heavy metal contamination for agricultural soils and crops in the these areas. METHODS AND RESULTS: This experiment was carried out to investigate the assessment of the heavy metal contamination in paddy soils located on downstream of the closed metalliferous mine. The average total concentrations of cadmium (Cd), copper (Cu), lead (Pb), zinc (Zn), and arsenic (As) in paddy soils were 8.88, 56.7, 809, 754, and 37.9 mg/kg, respectively. Specially, the average concentrations of Cd, Pb and Zn were higher than those of warning criteria for soil contamination(4 mg/kg for Cd, 200 mg/kg for Pb, and 300 mg/kg for Zn) in agricultural soil established by Soil Environmental Conservation Act in Korea. The proportions of 0.1 M HCl extractable Cd, Cu, Pb, Zn, and As concentration to total concentration of these heavy metals in paddy soils were 27.7, 21.3, 35.1, 13.8 and 10.5%, respectively. The pollution index of these five metals in paddy soils ranged from 0.42 to 11.92. Also, the enrichment factor (EFc) of heavy metals in paddy soils were in the order as Cd>Pb>Zn>Cu>As, and the enrichment factor in paddy soil varied considerably among the sampling sites. The geoaccumulation index (Igeo) of heavy metals in soils were in the order as Cd>Pb>Zn>Cu>As, specially, the average geoaccumulation index of Cd, Pb, and Zn (Igeo 2.49~3.10) were relatively higher than that of other metals in paddy soils. CONCLUSION: Based on the pollution index, enrichment factor, and geoaccumulation index for heavy metal in paddy soils located on downstream of closed metalliferous mine, the main contaminants are mine waste materials and mine drainage including mine activity.

Distribution of heavy metal contamination in soils and sediments in the vicinity of the Hwacheon Au-Ag-Pb-Zn mine

  • Lee Sung-Eun;Lee Jin-Soo;Chon Hyo-Taek
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.529-531
    • /
    • 2003
  • In order to investigate the level of heavy metal contamination and the seasonal variation of metal concentrations in soils and sediments influenced by past mining activities, tailings, soil and sediment samples were collected from the Hwacheon mine in Korea. The main pollution sources in this mine site are suggested as tailings and mine waste rocks. Elevated levels of Cd, Pb and Zn were found in soils and sediments. In a study of seasonal variation on the heavy metals in soils and sediments, heavy metals were higher enriched collected from before rainy season ($2^{nd}$ sampling) than after rainy season ($1^{st}$ sampling). Also, in order to estimate the microbial effects on Cd speciation in sediments, bacteria which can adsorb Cd was isolated and Cd adsorption characteristics of isolated bacteria in Cd solution was evaluated. The Cd bioremoval efficiency in Cd solution (5 ppm) by bacteria was more than $90\%$. Bioremoval efficiency in single metal solution was higher than that in mixed metal solution of Pb and Zn.

  • PDF

폐금속광산 하류하천에서의 수변식물내 중금속의 축척에 관한 연구

  • 김주선;이재영;최상일
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.09a
    • /
    • pp.235-240
    • /
    • 2004
  • This study is to study accumulation of the heavy metals by riparian vegetation throughout analysis of the heavy metal concentration in riparian vegetation, water, and sediment near mine drainage. According to analyzing concentration of the heavy metals in riparian vegetation, water, and sediment, the heavy metal was indicated at the leaf significantly. Compared with the concentration of sediment soil, the maximum concentration of the As, Cd, CN, Pb, Zn was higher 2.6, 2.6, 2.5, non-detect, and 1.5 times in leaf, Also those concentration have 9.6, 16.6, 2.5, 1.6, and 2.5 times in root. As the results, the author can know the sediment has a very relative to vegetation in mine drainage, because the increasing of concentration of heavy metal in sediment gives the more accumulative concentration of heavy metal in vegetation. Compared with the concentration of contaminated site and non-contaminated site. As, Cd, CN, Pb, Zn the maximum concentration in sediment soil was higher 5.7, 258.1, 10.9, 370.0, and 298.3 times respectively. In case of vegetation, the maximum concentration of the As, Cd, CN, Pb, Zn was higher 5.6, 62.3, 5.0, non-detect, and 30.6 times in leaf. Also those concentration have 8.5, 63.3, 2.6, 60.7, and 62.1 times in root. In this study, the author can surmise that there indicated a lot of adsorption with the heavy metal concentration in contaminated mine drainage.

  • PDF

Assesment of soil pollution by Abandoned Mines wastes

  • Kim Hee-Joung;Yang Jae-E.;Lee Jai-Young;Park Beang-Kil;Kong Sung-Ho;Jun Sang-Ho
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2005.04a
    • /
    • pp.363-370
    • /
    • 2005
  • There are approximately 2,000 metallic mines which have been abandoned in Korea. Most of the mines are located in the watershed area, which is main source of drinking water for Seoul Metropolitan area. Untreated mining wastes are remained around abandoned mines in study area. These mining wastes, flowing into farmland and stream in the downstream of abandoned mines, would cause water and soil pollution. The mining waste samples from Guedo mine, Manjung mine and Joil mine recently abandoned were collected for the evaluation of the potential of water pollution by mine waste. Index of geoaccumulation($M\"{u}ller$, 1979), fractional composition and removal efficiency of some heavy metals by different concentration of HCl treatment were analyzed. Index of geoaccumulation of Cd, Pb, Zn, Cu, Ni and Cr are 6, $4{\sim}6,\;0{\sim}6,\;4{\sim}5$, 2 and 0 respectively. Index of geoaccumulation of Cd, Pb, Zn and Cu reveals the mining wastes has high pollution pottential in the area. Organic fraction of Cu, reducible fraction of Pb, residual fraction of Ni and Zn were the most abundant fraction of heavy metals in mining wastes.

  • PDF

Geochemical Behavior, Dispersion and Enrichment of Environmental Toxic Elements in Coaly Metapelites and Stream Sediments at the Hoenam Area, up the Taecheong Lake, Korea (대청호 상류, 회남일대에 분포하는 탄질 변성니질암과 하상 퇴적물의 환경유해원소에 관한 지화학적 거동, 분산 및 부화)

  • Lee, Chan Hee;Lee, Hyun Koo
    • Economic and Environmental Geology
    • /
    • v.30 no.3
    • /
    • pp.209-222
    • /
    • 1997
  • The Hoenam area, up the Taecheong lake, composed mainly of low grade coal-bearing metapelites within the Ogcheon Supergroup. These coal formations are developed discontinuously several hundred meters and swelling from 10 to 300 cm along the host metapelites. Although the formations have been mined for coal, but already mined out, and the formations were higher content (mean value of 42 samples) of environmental toxic elements as As (13 ppm). Ba (1.81 wt. %), Cd (2 ppm), Cr (188 ppm), Cu (87 ppm), Mo (214 ppm), Pb (25 ppm), Sb (3 ppm), Se (12 ppm), U (55 ppm), V (2124 ppm) and Zn (234 ppm) than the host metapelites and the NASC. The Al, Ti, Mg, K and Na contents in stream sediments derived from the Hando and Bugook mine area were highly concentrations than the samples from the Samseongjeil mine area. The mean value (wt. %) of Fe (10.07), Mn (0.15), Ca (0.84), P (0.18) and Ba (0.77) influenced by the Samseongjeil mine were higher than the other mine drainage sediments. The mean content (ppm) of environmental toxic elements in drainage sediments from the Samseongjeil mine were taken As (2083), Cu (447), Mo (202), Ni (720), Pb (42), U (250), V (1070) and Zn (2632), which are extremely high concentrations against NASC and EPA. Characteristics of elemental behavior and dispersion of the all toxic elements are the same as increased with increasing U, V, and Cu. Rare earth elements in the sediments are enriched with LREE (La, Ce and Nd) from the drainage on strong concentration of toxic elements. The pH of stream water is neutral, but pH of the sediments ranged from 4.92 to 6.93 (mean 6.22), those are slightly acid in the Hando mine area. Major elements in the host rocks at the Hoenam area are mostly depleted especially Ca, excepting Ti and Ba, normalized with NASC. The sediments were highly enriched of Ti, Fe, Mg, Mn and Ba, but depleted of Al, K, Ca, Na and P on the basis of host rocks and NASC. Minor and environmental toxic elements in the host rocks were strongly enriched all elements (As, Cd, Mo, Se, D, V and Zn), excepting Co, Ni and Sr. Enrichment index (mean value) about toxic elements (As, Cr, Cu, Fe, Ni, Pb and Zn) of the sediments in this area have taken 41.35 (Hando mine drainage; 2.73, Samseongjeil mine drainage; 113.14 and Bugook mine drainage; 8.19), those are seriously contaminated by environmental toxic elements.

  • PDF