• Title/Summary/Keyword: Zn Corrosion

Search Result 336, Processing Time 0.033 seconds

Corrosion Analysis of Materials by High Temperature and Zn Fume (고온 및 Zn Fume에 의한 소재들의 부식성 분석)

  • Baek, Min Sook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.5
    • /
    • pp.551-556
    • /
    • 2018
  • The material normally used in hot dip galvanizing facilities is SM45C (carbon steel for mechanical structure, KS standard), mainly because of its price. During this process, the oxidation of the plating facility occurs due to the heat of the Zn fumes coming from the molten zinc. Since the cycle time of the current facilities is 6 months, much time and money are wasted. In this study, the corrosive properties of various materials (Inconel625, STS304, SM45C) were investigated by oxidation in a high temperature and Zn fumes environment. The possibility of applying the hot-dip galvanizing equipment was investigated for each material. The Zn fumes were generated by directly bubbling Ar gas into Zn molten metal in a 650 degree furnace. High-temperature, Zn fumes corrosion was conducted for 30 days. The sample was removed after 30 days and the oxidation of the surface was confirmed with EDS and SEM, and the corrosion properties were examined using potentiodynamic polarization tests.

Effect of Ni Addition Interfacial Reaction and Corrosion Resistance in Hot Dip Galvanizing (용융안연 도금욕의 Ni첨가가 도금강판의 게면반응 및 내식성에 미치는 영향)

  • 이경구;시희봉;이도재
    • Journal of the Korean institute of surface engineering
    • /
    • v.31 no.6
    • /
    • pp.379-388
    • /
    • 1998
  • The iron-zinc interfacial reaction and corrosin properties in galvanizing bath containning Ni have been intestigated. The substrate steel plates were galvanized in Zn or Zn-0.018Al baths with various Ni contents. The corrosion resistance of galvanized specimens was also evaluated by $60^{\circ}$bending test for galvannealing speaaimens. The corrosion resistance was improved with Ni addition in pure Zn bath, while deteriorated with Ni addition in Zn-0.18Al bath. The anti-powdering property, on thhe otherhand, was improved with Ni addition in Zn-0.18Al bath, while deteriorated with Ni addition in pure Zn. It was found that the anti-powdering property was improved with increasing $\xi$ phase ratio in reaction layer.

  • PDF

A Study on the Properties of the Zn-Cr Alloy Films by Evaporation (진공증착법으로 제조된 Zn-Cr박막의 특성에 관한 연구)

  • Ju, Bong-Hwan;Lee, Gyu-Hwan;Gwon, Sik-Cheol;Baek, Un-Seung
    • 연구논문집
    • /
    • s.23
    • /
    • pp.109-120
    • /
    • 1993
  • A study on corrosion and adhesion properties of evaporated Zn-Cr films were conducted on steel strip by two-source evaporater. Corrosion resistance of Zn-Cr coated steel was evaluated by salt spray test in 5% NaCl. Adhesion property of Zn-Cr films on steel substrate was evaluated by tape test after $180^\circC$ bending. Adhesion was improved with increasing the Cr content and reached the maximum at the Cr content of 6 to 8wt%. Corrosion resistance was enhanced with increasing the Cr content and improved by rolling Zn-Cr coated specimen, as a post-treatment.

  • PDF

The Effect of Additive to Corrosion Resistance of Heavy Anti-Corrosive Paint (중방식 도료의 내식성에 미치는 첨가제의 영향)

  • Moon, Kyung-Man;Lee, Myung-Hoon;Kim, Hyun-Myung;Lee, In-Won;Jeon, Ho-Hwan
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.173-176
    • /
    • 2006
  • There are many kinds of protection methods for marine structures by using and environmental condition. Coating protection method, one of these methods is being widely adopted to both all ground and marine structures. In this study, by adding some additives such as Zn powder(Zn), carbon black(CB) to epoxy anti-corrosive paint, the effect to promote corrosion resistance was investigated with electrochemical method. Corrosion potentials with additives shifted to negative direction than no additive. However passivity current density increased than no additive except for Zn(20)+CB(10), especially, additive of Zn(20)+CB(10) showed the smallest passivity current density. Polarization resistance of Zn(20)+CB(10) by both cyclic voltammogram and impedance measurement was the largest value than other additives. And also surface phenomenon by adding Zn(20)+CB(10) was observed a good add condition not showing bubbling than other additives.

  • PDF

Density and Corrosion Property Improvement of Zn-Mg Coatings by Controlling the Substrate Temperature during the Deposition (증착 기판 온도 제어에 따른 Zn-Mg 박막의 치밀도 및 내식성 향상에 관한 연구)

  • Song, Myeon-Kyu;La, Joung-Hyun;Kim, Hoe-Kun;Lee, Sang-Yul
    • Journal of the Korean institute of surface engineering
    • /
    • v.50 no.4
    • /
    • pp.266-271
    • /
    • 2017
  • In this study, the corrosion resistance of Zn-3wt.%Mg coating was enhanced by controlling the density of coating. During the deposition the substrate temperature was controlled via an intermittent deposition process, resulting in the improvement of coating density. The maximum substrate temperature during this intermittent deposition process could be controlled from $200^{\circ}C$ to $80^{\circ}C$, depending upon the number of coating layer. The density of Zn-3 wt.%Mg coating increased from 76.1 % to 95.8 % as the substrate temperature was controlled. The salt spray test results revealed that the corrosion resistance of Zn-Mg coated steel could increase 3 times by increasing the density in coatings, while adhesion strength of coating was not changed significantly during 0-T bending test.

Corrosion of Zinc Coated Steel in Magnetically Treated 3% Sodium Chloride Solution

  • Chiba, A.;Ohki, T.;Wu, Wen-Chang
    • Corrosion Science and Technology
    • /
    • v.5 no.2
    • /
    • pp.39-44
    • /
    • 2006
  • The dissolution amount of Zn plate was $0.058mg/cm^2$ in the non-magnetically treated solution, and was $0.059mg/cm^2$ in the magnetically treated solution after 24 hours of immersion. The magnetic treatment had no effect to corrosion of Zn plate as pH on surface was not recognized the difference. The addition of Zn(II) ion in the solution was prepared to the effects of corrosion and dissolution of Fe. The regularity was not obtained the effect of the magnetic treatment on the dissolution of Fe plate.

Localized Corrosion of Zn-Plated Carbon Steel Used as a Fire Sprinkler Pipe

  • Lee, Jin Hee;Lee, You-Kee;Lee, Kyu Hwan;Kim, Dong-Kyu;Lee, Sung Gun;Lee, Sang Hwa;Kim, Insoo
    • Corrosion Science and Technology
    • /
    • v.8 no.4
    • /
    • pp.148-152
    • /
    • 2009
  • The failure of a Zn-plated carbon steel pipe that served as a fire sprinkler was investigated in terms of the pipe's corrosion products. The pipes leaked through holes formed beneath the tubercles. The formation of oxygen concentration cell involves colonization of metal surface by aerobic bacteria or other slime formers, and anodic reaction beneath tubercle is accelerated by the presence of SRB, leading to the formation of hole beneath tubercle.

Corrosion of Zn and Zn-Fe alloys in $Ca(OH)_2$ Solutions ($Ca(OH)_2$ 수용액에서 Zn과 Zn-Fe 합금의 부식)

  • Lee, Soo-Sun;Kang Sung-Goon
    • Journal of the Korean institute of surface engineering
    • /
    • v.19 no.4
    • /
    • pp.133-139
    • /
    • 1986
  • The effects of alternating voltage, $Cl^-$ ion and pH on the corrosion of Zn and Zn-Fe alloys have been investigated by using electrochemical techniques in $Ca(OH)_2$ solutions. The passive film $Zn(OH)_2$ was initially formed on the Zn surface and gradually transformed to $Ca(Zn(OH)_3)_2{\cdot}2H_2O$, which was identified with the X-ray diffraction method, SEM micrograph and EPMA. The passivity current increased with increasing alternating voltage and decrease AC frequency. ${\xi}$ phase in Zn-Fe alloys reduced the effects of AC. The effect of $Cl^-$ ion on the passivity current of Zn was similar to the AC effect, resulting in pits on Zn. It was also found that the passive region of Zn decreased rapidly below pH 10.3 of the solution.

  • PDF

Effects of Zn2+ concentration and pH on the formation and growth of zinc phosphate conversion coatings on AZ31 magnesium alloy

  • Van Phuong, Nguyen;Lee, Kyuhwan;Lee, Sangyeol;Moon, Sungmo
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2013.05a
    • /
    • pp.62-62
    • /
    • 2013
  • Magnesium alloys exhibit many attractive properties such as low density, high strength/weight ratio, high thermal conductivity, very good electromagnetic features and good recyclability. However, most commercial magnesium alloys require protective coatings because of their poor corrosion resistance. Attempts have been made to improve the corrosion resistance of the Mg alloys by surface treatments, such as chemical conversion coatings, anodizing, plating and metal coatings. Among them, chemical conversion coatings are regarded as one of the most effective and cheapest ways to prevent corrosion of Mg alloys. In this study, the effects of various $Zn^{2+}$ concentrations and pH levels on the formation of zinc phosphate conversion coatings (ZPCCs) on AZ31 magnesium alloy were investigated, and corrosion resistances of the coated samples were evaluated by immersion test and potentiodynamic polarization experiment. The corrosion resistance of the coated AZ31 samples was found to increase with increasing $Zn^{2+}$ concentration and the lowest corrosion rate was obtained for the samples coated at pH of 3.07, independent of $Zn^{2+}$ concentration. The best coatings on AZ31 were obtained at [$Zn^{2+}$] = 0.068 M and pH 3.07. At the conditions of [$Zn^{2+}$] = 0.068 M and pH 3.07, the formation and growth processes of ZPCCs on AZ31 Mg alloy are divided into four stages: formation of a dense layer, precipitation of fine crystals on the dense layer, growths of the inner and outer layers, and reorganization of outer crystalline layer.

  • PDF

Investigation of the corrosion properties of as extruded Mg5Sn(1-4)Zn ternary alloy (Mg5Sn(1-4)Zn 삼원계 압출재의 부식저항성 연구)

  • Ha, Heon-Yeong;Kim, Seong-Gyeong;Gang, Jeon-Yeon;Im, Chang-Dong;Yu, Bong-Seon
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2012.11a
    • /
    • pp.15-15
    • /
    • 2012
  • Mg(1-4)Zn 이원계 압출재 및 Mg5Sn(1-4)Zn 삼원계 압출재의 부식거동을 3.5 % NaCl 용액에서 다양한 전기화학기법을 이용하여 평가하였다. 이원계 합금에 대한 연구결과, Zn 함량 증가에 따라 Mg 모재의 부동태화가 촉진되었고 동시에 수소발생속도가 증가하였으며 그 결과 부식전위의 상승이 관찰되었다. 그러나 Zn 함량 증가에 따른 부동태화 효과보다 수소발생 증가 효과가 우세하므로 결과적으로 Zn 함량 증가에 따라 부식속도는 증가하였다. Mg5Sn(1-4)Zn 삼원계 합금에 대한 부식시험 결과, Mg5Sn2Zn 합금이 가장 낮은 부식속도 및 우수한 부동태화를 나타내었으며 이는 합금원소 Sn의 수소발생속도 감소효과와 합금원소 Zn의 부동태화 효과의 상호작용에 의한 것으로 사료된다.

  • PDF