• Title/Summary/Keyword: Zn Corrosion

Search Result 336, Processing Time 0.036 seconds

Properties Analysis of Zn-Mg Alloy Thin Films Prepared by Plasma Enhanced PVD Method (Plasma-PVD법에 의해 제작한 Zn-Mg합금 박막의 특성 분석)

  • Lee, K.H.;Bae, I.Y.;Kim, Y.J.;Moon, K.M.;Lee, M.H.
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.194-195
    • /
    • 2005
  • (100-x)Zn xMg alloy films are prepared onto cold-rolled steel substrates; where x ranged from 0 to about 38 atomic %. The alloy films show microcrystalline and grain structures respectively, according to preparation conditions such as composition ratio of zinc and magnesium or gas pressures etc.. And X-ray diffraction analysis indicates not only the presence of Zn-Mg thin films with forced solid solution but also the one of $MgZn_2$ alloy films partly. In addition the influence of Mg/Zn composition ratio and morphology of the Zn-Mg alloy films on corrosion behavior is evaluated by electro-chemical anodic polarization tests in deaerated 3% NaCl solution. From this experimental results, all the prepared Zn-Mg alloy films showed obviously good corrosion resistance to compare with 99.99% Zn and 99.99% Mg Ingots for evaporation metal. It is thought that the Zn-Mg films with effective forced solid solution prepared by plasma enhanced PVD method, produces smaller and denser grain structure so that may improve the formation of homogeneous passive layer in corrosion environment.

  • PDF

Effect of Sr Addition on Mechanical and Corrosion Properties of Mg-Zn-Ca Alloy for Biodegradable Implant Material (생체 분해성 임플란트용 Mg-Zn-Ca 합금의 기계적 및 부식특성에 미치는 Sr 첨가의 영향)

  • Kong, Bo-Kwan;Cho, Dae-Hyun;Yun, Pil-Hwan;Lee, Jeong-Hun;Park, Jin-Young;Park, Ik-Min
    • Journal of Korea Foundry Society
    • /
    • v.35 no.6
    • /
    • pp.155-162
    • /
    • 2015
  • The effect of Sr addition on mechanical and bio-corrosion properties of as-cast Mg-3wt.%Zn-0.5wt.%Ca-xwt.%Sr (x = 0.3, 0.6, 0.9) alloys were examined for application as biodegradable implant material. The microstructure, mechanical properties and corrosion resistance of the as-cast Mg-Zn-Ca-Sr alloys were characterized by using optical microscopy, scanning electron microscopy, tensile testing and electrochemical measurement in Hank's solution. The as-cast alloys contained ${\alpha}$-Mg and eutectic $Ca_2Mg_6Zn_3$ phases, while the alloys contained ${\alpha}$-Mg, $Ca_2Mg_6Zn_3$ and Mg-Zn-Ca-Sr intermetallic compound when the Sr addition was more than 0.3 wt.%. The yield strength, ultimate tensile strength and elongation increased with the increasing of Sr content up to 0.6 wt.% but decreased in the 0.9 wt.% Sr-added alloy, whereas the corrosion resistance of 0.3 wt.% Sr-added alloy was superior to other alloys. It was thought that profuse Mg-Zn-Ca-Sr intermetallic compound deteriorated both the mechanical properties and corrosion resistance of the as-cast alloy.

Corrosion Analysis of Ni alloy according to the type of molten metal (용융아연도금욕에 적용되는 용탕에 따른 Ni합금의 부식성 분석)

  • Baek, Min-Sook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.6
    • /
    • pp.459-463
    • /
    • 2017
  • Hot dip galvanizing in the steel plant is one of the most widely used methods for preventing the corrosion of steel materials including structures, steel sheets, and materials for industrial facilities. While hot dip galvanizing has the advantage of stability and economic feasibility, it has difficulty in repairing equipment and maintaining the facilities due to high-temperature oxidation caused by Zn Fume where molten zinc used in the open spaces. Currently, SM45C (carbon steel plate for mechanical structure, KS standard) is used for the equipment. If a part of the equipment is resistant to high temperature and Zn fume, it is expected to improve equipment life and performance. In this study, the manufactured Ni alloy was tested for its corrosion resistance against Zn fume when it was used in the hot dip galvanizing equipment in the steel plant. Two kinds of materials currently used in the equipment, new Ni alloy and Inconel(typical corrosion-resistant Ni alloy), were selected as the reference groups. Two kinds of molten metal were used to confirm the corrosion of each alloy according to the molten metal. Zn fume was generated by bubbling Ar gas from molten Zn in a furnace($500{\sim}700^{\circ}C$) and the samples were analyzed after 30 days. After 30 days, the specimens were taken out, the oxide layer on the surface was confirmed with an optical microscope and SEM, and the corrosion was confirmed using a potentiodynamic polarization test. Corrosion depends on the type of molten metal.

A Study of Electroplating Conditions and Corrosion Resistance for Al2O3 Dispersed Zn-Co-Cr Electroplated Steel Sheets (Al2O3 분산 Zn-Co-Cr 전기도금강판의 제조조건 및 내식성에 관한 연구)

  • Kim, S.B.;Suh, S.J.;Park, H.S.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.6 no.2
    • /
    • pp.89-97
    • /
    • 1993
  • An improvement in corrosion resistance of various types of Zn-coated steel sheets is thought to be possible with the addition of fine oxide powder to the coating. In this study the corrosion resistance of the $Al_2O_3$ dispersed Zn-Co-Cr electroplated steel sheet has been investigated and the results were as follows : The corrosion resistance of $Al_2O_3$ dispersed Zn-Co-Cr electroplated steel sheets was improved by increasing the contents of Co and Cr ions, and also $Al_2O_3$ powders in the bath because of the increased amount of Co, Cr and $Al_2O_3$ in deposits. In the $Al_2O_3$ dispersed Zn-Co-Cr electroplated steels sheet, the structure of deposits was changed from fine microstructure as observed in high Co containing deposits to coarse microstructure as in high Cr and $Al_2O_3$ containing deposits. By cold rolling of the $Al_2O_3$ dispersed Zn-Co-Cr electroplated steel sheets to about 2 percent, thr corrosion resistance was improved further.

  • PDF

Effect of Zn/Al Cation Ratio on Corrosion Inhibition Capabilities of Hydrotalcites Containing Benzoate Against Carbon Steel

  • Thu Thuy, Pham;Anh Son, Nguyen;Thu Thuy, Thai;Gia Vu, Pham;Ngoc Bach, Ta;Thuy Duong, Nguyen;To Thi Xuan, Hang
    • Corrosion Science and Technology
    • /
    • v.21 no.6
    • /
    • pp.434-444
    • /
    • 2022
  • Corrosion inhibitors based on Zn-Al hydrotalcites containing benzoate (ZnAlHB) with different molar ratios of Zn/Al were prepared with a co-precipitation process. Compositions and structures of the resulting hydrotalcites were studied with suitable spectroscopic methods such as inductively coupled plasma mass spectrometry (ICP-MS), ultraviolet-visible spectrophotometry (UV-Vis), scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and surface zeta potential measurements, respectively. Results of physico-chemical studies showed that crystallite sizes, compositions of products, and surface electrical properties were significantly changed when the molar ratio of Zn/Al was increased. The release of benzoate from hydrotalcites also differed slightly among samples. Anticorrosion abilities of hydrotalcites intercalated with benzoate at a concentration of 3 g/L on carbon steel were analyzed using electrochemical impedance spectroscopy (EIS), polarization curve, energy-dispersive X-ray spectroscopy (EDX), and SEM. Corrosion inhibition abilities of benzoate modified hydrotalcites in 0.1 M NaCl showed an upward trend with increasing Zn/Al ratio. The reason for the dependence of corrosion resistance on the Zn/Al ratio was discussed, including changes in the microstructure of hydrotalcites such as crystal size, density, uniformity, and formation of ZnO.

Zn-Cr Alloy Plating from Acidic Chloride Bath: Effect of Temperature and Current Densities on Composition of Electrodeposits (산성염화욕에서의 Zn-Cr합금도금 : 합금화에 미치는 전류밀도와 온도의 영향)

  • Kang, Soo Young
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.11
    • /
    • pp.285-290
    • /
    • 2018
  • The steel has been used in modern industry, car maker and electric appliance. The steel have some problem, specially corrosion problem. To solve corrosion problem, Zn electrodeposit on steel have been adapted. Recently, The modern industry asks to increase corrosion resistance. Naturally, Increasing corrosion resistance increases the thickness of Zn electrodeposit. But increasing thickness of Zn electrodeposit has some problems. In making part, There are some crack. This crack cause to decrease corrosion resistance. To solve this problem, it is interested in Zn Based alloy electrodeposit such as Zn-Cr. Here, the influence of the electrolytic conditions on the composition of the alloy plating in the chloride bath was investigated. The results are explained by the cathode overvoltage curve of Cr and Zn. As the current density of the cathode increases, Zn content of electrodeposit decrease and Cr content of electrodeposit increase. As the temperature of the electrolyte increases, Zn content of electrodeposit decrease and Cr content of electrodeposit increase.

Corrosion Behavior of Ti-6Al-4V Alloy after Plasma Electrolytic Oxidation in Solutions Containing Ca, P and Zn

  • Hwang, In-Jo;Choe, Han-Cheol
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2016.11a
    • /
    • pp.120-120
    • /
    • 2016
  • Ti-6Al-4V alloy have been used for dental implant because of its excellent biocompatibility, corrosion resistance, and mechanical properties. However, the integration of such implant in bone was not in good condition to achieve improved osseointergraiton. For solving this problem, calcium phosphate (CaP) has been applied as coating materials on Ti alloy implants for hard tissue applications because its chemical similarity to the inorganic component of human bone, capability of conducting bone formation and strong affinity to the surrounding bone tissue. Various metallic elements, such as strontium (Sr), magnesium (Mg), zinc (Zn), sodium (Na), silicon (Si), silver (Ag), and yttrium (Y) are known to play an important role in the bone formation and also affect bone mineral characteristics, such as crystallinity, degradation behavior, and mechanical properties. Especially, Zn is essential for the growth of the human and Zn coating has a major impact on the improvement of corrosion resistance. Plasma electrolytic oxidation (PEO) is a promising technology to produce porous and firmly adherent inorganic Zn containing $TiO_2(Zn-TiO_2)$coatings on Ti surface, and the a mount of Zn introduced in to the coatings can be optimized by altering the electrolyte composition. In this study, corrosion behavior of Ti-6Al-4V alloy after plasma electrolytic oxidation in solutions containing Ca, P and Zn were studied by scanning electron microscopy (SEM), AC impedance, and potentiodynamic polarization test. A series of $Zn-TiO_2$ coatings are produced on Ti dental implant using PEO, with the substitution degree, respectively, at 0, 5, 10 and 20%. The potentiodynamic polarization and AC impedance tests for corrosion behaviors were carried out in 0.9% NaCl solution at similar body temperature using a potentiostat with a scan rate of 1.67mV/s and potential range from -1500mV to +2000mV. Also, AC impedance was performed at frequencies ranging from 10MHz to 100kHz for corrosion resistance.

  • PDF

Effect of ZnO Nanoparticle Presence on SCC Mitigation in Alloy 600 in a Simulated Pressurized Water Reactors Environment

  • Sung-Min Kim;Woon Young Lee;Sekown Oh;Sang-Yul Lee
    • Journal of the Korean institute of surface engineering
    • /
    • v.56 no.6
    • /
    • pp.401-411
    • /
    • 2023
  • This study investigates the synthesis, characterization, and application of zinc oxide (ZnO) nanoparticles for corrosion resistance and stress corrosion cracking (SCC) mitigation in high-temperature and high-pressure environments. The ZnO nanoparticles are synthesized using plasma discharge in water, resulting in rod-shaped particles with a hexagonal crystal structure. The ZnO nanoparticles are applied to Alloy 600 tubes in simulated nuclear power plant atmospheres to evaluate their effectiveness. X-ray diffraction and X-ray photoelectron spectroscopy analysis reveals the formation of thermodynamically stable ZnCr2O4and ZnFe2O4 spinel phases with a depth of approximately 35 nm on the surface after 240 hours of treatment. Stress corrosion cracking (SCC) mitigation experiments reveal that ZnO treatment enhances thermal and mechanical stability. The ZnO-treated specimens exhibit increased maximum temperature tolerance up to 310 ℃ and higher-pressure resistance up to 60 bar compared to non-treated ZnO samples. Measurements of crack length indicate reduced crack propagation in ZnO-treated specimens. The formation of thermodynamically stable Zn spinel structures on the surface of Alloy 600 and the subsequent improvements in surface properties contribute to the enhanced durability and performance of the material in challenging high-temperature and high-pressure environments. These findings have significant implications for the development of corrosion-resistant materials and the mitigation of stress corrosion cracking in various industries.

Mechanical Property and Corrosion Resistance of Mg-Zn-Y Alloys Containing Icosahedral Phase (준결정상을 포함한 Mg-Zn-Y 합금의 기계적 특성 및 부식 저항성)

  • Kim, Do Hyung;Kim, Young Kyun;Kim, Won Tae;Kim, Do Hyang
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.2
    • /
    • pp.145-152
    • /
    • 2011
  • Mechanical and property corrosion resistance of Mg-Zn-Y alloys with an atomic ratio of Zn/Y of 6.8 are investigated using optical microscopy, scanning electron microscopy, transmission electron microscopy, uniaxial tensile test and corrosion test with immersion and dynamic potentiometric tests. The alloys showed an in-situ composite microstructure consisting of ${\alpha}$-Mg and icosahedral phase (I-phase) as a strengthening phase. As the volume fraction of the I-phase increases, the yield and tensile strengths of the alloys increase while maintaining large elongation (26~30%), indicating that I-phase is effective for strengthening and forms a stable interface with surrounding ${\alpha}$-Mg matrix. The presence of I-phase having higher corrosion potential than ${\alpha}$-Mg, decreased the corrosion rate of the cast alloy up to I-phase volume fraction of 3.7%. However further increase in the volume fraction of the I-phase deteriorates the corrosion resistance due to enhanced internal galvanic corrosion cell between ${\alpha}$-Mg and I-phase.

MICROSTRUCTURE AND ELECTROCHEMICAL CHARACTERISTICS OF ELECTRODEPOSITED Zn-Ni ALLOY COATINGS

  • Short, N.R.;Hui, Wen-Hua;Dennis, J.K.
    • Journal of the Korean institute of surface engineering
    • /
    • v.32 no.3
    • /
    • pp.281-288
    • /
    • 1999
  • Electrodeposited Zn-Ni alloy coatings are of particular interest for improving the corrosion resistance of steel in a number of enviornments. Of particular interest is the relationship between composition, structure and corrosion rate. This paper firstly reviews the literature regarding composition-structure relationships of Zn-Ni electrodeposits and compares them with the equilibrium phase diagram. Secondly, research was carried out on a wide range of coatings which were produced in the laboratory and their structure and corrosion rates determined. It was found that unambiguous identification of phases from XRD data can be difficult. Maximum corrosion resistance of deposits is obtained at 12-13% Ni, with a $\gamma$ phase structure and predomination of (600) and (411) reflections. Compatibility is important with regard to chromate conversion coatings.

  • PDF