• Title/Summary/Keyword: Zn(S/O)

Search Result 1,362, Processing Time 0.031 seconds

Flexible 3D ZnO/Polymer Composite by Simple-Step Growth Processing for Highly Photocatalytic Performance

  • Lee, Hyun Uk;Park, So Young;Seo, Jung Hye;Son, Byoungchul;Lee, Jouhahn
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.412-412
    • /
    • 2014
  • Zinc oxide (ZnO) is one of the most powerful materials for purifying organic pollutants using photocatalytic activity. In this study, we have introduced a novel method to design highly photoreactive flexible 3 dimensional (3D) ZnO nanocomposite [F-ZnO-m (m: reaction time, min)] by electrospinning and simple-step ZnO growth processing (one-step ZnO seed coating/growth processing). Significantly, the F-ZnO-m could be a new platform (or candidate) as a photocatalytic technology for both morphology control and large-area production. The highest photocatalytic degradation rate ([k]) was observed for F-ZnO-m at 2.552 h-1, which was 8.1 times higher than that of ZnO nanoparticles (NPs; [k] = 0.316 h-1). The enhanced photocatalytic activity of F-ZnO-m may be attributed to factors such as large surface area. The F-ZnO-m is highly recyclable and retained 98.6% of the initial decolorization rate after fifteen cycles. Interestingly, the F-ZnO-m samples show very strong antibacterial properties against both Gram-negative Escherichia coli (E. coli) and Gram-positive Staphylococcus aureus (S. aureus) after exposure to UV-light for 30 min. The antibacterial properties of F-ZnO-m samples are more effective than those of ZnO NPs. More than 96.6% of the E. coli is sterilized after ten cycles. These results indicate that F-ZnO-m samples might have utility in several promising applications such as highly efficient water/air treatment and inactivation of pathogenic microorganisms.

  • PDF

Highly Photocatalytic Performance of flexible 3 Dimensional (3D) ZnO nanocomposite

  • Lee, Hyun Uk;Seo, Jung Hye;Son, Byoungchul;Kim, Hyeran;Yun, Hyung Joong;Jeon, Cheolho;Lee, Jouhahn
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.270.1-270.1
    • /
    • 2013
  • Zinc oxide (ZnO) is one of the most powerful materials for purifying organic pollutants using photocatalytic activity. In this study, we have introduced a novel method to design highly photoreactive flexible 3 dimensional (3D) ZnO nanocomposite [F-ZnO-m (m: reaction time, min)] by electrospinning and simple-step ZnO growth processing (one-step ZnO seed coating/growth processing). Significantly, the F-ZnO-m could be a new platform (or candidate) as a photocatalytic technology for both morphology control and largearea production. The highest photocatalytic degradation rate ([k]) was observed for F-ZnO-m at 2.552 h-1, which was 8.1 times higher than that of ZnO nanoparticles (NPs; [k] = 0.316 h-1). The enhanced photocatalytic activity of F-ZnO-m may be attributed to factors such as large surface area. The F-ZnO-m is highly recyclable and retained 98.6% of the initial decolorization rate after fifteen cycles. Interestingly, the F-ZnO-m samples show very strong antibacterial properties against both Gram-negative Escherichia coli (E. coli) and Gram-positive Staphylococcus aureus (S. aureus) after exposure to UV-light for 30 min. The antibacterial properties of F-ZnO-m samples are more effective than those of ZnO NPs. More than 96.6% of the E. coli is sterilized after ten cycles. These results indicate that F-ZnO-m samples might have utility in several promising applications such as highly efficient water/air treatment and inactivation of pathogenic microorganisms.

  • PDF

Alanysis of the Optical Properties of p-type ZnO Thin Films Doped by P based on Ampouele-tube Method (Ampoule-tube 법으로 Phosphorus를 도핑한 P형 ZnO 박막의 광학적 특성 분석)

  • Yoo, In-Sung;Oh, Sang-Hyun;So, Soon-Jin;Park, Choon-Bae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.145-146
    • /
    • 2006
  • The most Important research topic in the development of ZnO LED and LD is the production of p-type ZnO thin film that has minimal stress with outstanding stoichiometric ratio. In this study, Phosphorus diffused into the undoped ZnO thin films using the ampoule-tube method for the production of p-type znO thin films. The undoped ZnO thin films were deposited by RF magnetron sputtering system on $GaAs_{0.6}P_{0.4}$/GaP and Si wafers. 4N Phosphorus (P) was diffused into the undoped ZnO thin films in ampoule-tube which was performed and $630^{\circ}C$ during 3hr. We found the diffusion condition of the conductive ZnO films which had p-type properties with the highest mobility of above 532 $cm^2$/Vs compared with other studies PL spectra measured at 10K for the purpose of analyzing optical properties of p-type ZnO thin film showed strong PL intensity in the UV emission band around 365nm ~ 415nm and 365nm ~ 385nm.

  • PDF

Development of the Quantum Dot/ZnO Nanowire Heterostructure and Their Photoelectrochemical Application

  • Hwang, In-Seong;Seol, Min-Su;Kim, Hui-Jin;Yong, Gi-Jung
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.378-378
    • /
    • 2011
  • ZnO 나노선 구조는 나노선 구조를 통해 입사한 빛을 산란시켜 광흡수를 촉진시키고, 바닥 전극으로 바로 이어진 수직의 1차원 구조를 통해 전자가 빠르게 이동할 수 있으며, 넓은 표면적을 가지고 있는 등의 장점을 가지고 있어 오래전부터 광전소자에 이용되었다. 하지만 ZnO 물질 자체의 밴드갭 에너지가 3.2 eV로 비교적 큰 편이라 가시광 영역의 빛을 흡수, 이용하기 위해서는 작은 밴드갭을 가지는 광감응 물질이 필요하다. 본 연구에서는 저온의 수열합성법을 통해 합성한 ZnO 나노선 구조 상에 Cd 계열의 무기물 양자점을 증착하여 이종구조를 형성하는 방법을 개발하였다. 본 연구에서 사용한 양자점인 CdS와 CdSe는 벌크 밴드갭 에너지가 각각 2.3 eV, 1.7 eV로 가시광 영역의 빛을 흡수할 수 있으며, ZnO 나노선과 type-II 밴드구조를 가지기 때문에 전자-정공 분리 및 포집에 유리하다. 합성된 구조를 이용하여 photoelectrochemical 특성을 분석하였으며, 그 결과 양자점의 증착으로 광전류 생성이 향상됨을 확인하였다. 특히 ZnO 나노선 상에 CdS 양자점 증착 후 추가적으로 CdSe 양자점을 증착하여 다중접합 나노선 구조를 형성한 경우 광전류 생성이 가장 크게 향상된 결과를 확인하였다.

  • PDF

Studies on Characteristics of $ZnCa_2O_4$ Prepared by Glycine Nitrate Process anti S01id State Reaction for FE8 Phosphor (GNP법과 고상반응법으로 제조한 FED 형광체용 $ZnCa_2O_4$ 분말의 특성에 관한 연구)

  • Sin, Han;Park, Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.91-95
    • /
    • 1999
  • PED용 형광체로 사용되는 ZnCa$_2$O$_4$를 Clycine Nitrate Process로 합성하여 고상 반응법으로 합성한 ZnCa$_2$O$_4$ 분말과 비교 분석하였다. 또한 Glycine Nitrate Process로 제조시 Mn의 doping 농도를 변화시키면서 각각의 조성비에 따른 발광특성을 알아보았다. TGA 측정 결과 GNP법으로 합성된 ZnCa$_2$O$_4$ 의 경우 약 40$0^{\circ}C$ 이상에서 무게감량의 변화가 없었으며, XRD 상분석 결과 연소반응 후 이미 상형성이 이루어짐을 알 수 있었다. PL측정을 결과 GNP(GIycine Nitrate Process)로 제조된 ZnCa$_2$O$_4$분말의 발광효율이 고상 반응법으로 제조된 분말보다 우수하였으며, 균일하고 비표면적이 큰 단일상임이 관찰되었고, 더 작은 에너지와 시간으로 제조할 수 있는 장점이 있었다

  • PDF

Importance of Zinc Oxide Nanoparticle Concentration on the Electrical Properties of Lead Sulfide Quantum Dots-Based Shortwave Infrared Photodetectors (황화납 양자점 기반 단파장 적외선 수광소자의 전기적 특성 향상을 위한 산화아연 나노입자 농도의 중요성)

  • Seo, Kyeong-Ho;Bae, Jin-Hyuk
    • Journal of Sensor Science and Technology
    • /
    • v.31 no.2
    • /
    • pp.125-130
    • /
    • 2022
  • We describe the importance of zinc oxide nanoparticle (ZnO NP) concentration in the enhancement of electrical properties in a lead sulfide quantum dot (PbS QD)-based shortwave infrared (SWIR) photodetector. ZnO NPs were synthesized using the sol-gel method. The concentration of the ZnO NPs was controlled as 20, 30 and 40 mg/mL in this study. Note that the ZnO NPs layer is commonly used as an electron transport layer in PbS QDs SWIR photodetectors. The photo-to-dark ratio, which is an important parameter of a photodetector, was intensively examined to evaluate the electrical performance. The 20 mg/mL condition of ZnO NPs exhibited the highest photo-to-dark ratio value of 5 at -1 V, compared with 1.8 and 0.4 for 30 mg/mL and 40 mg/mL, respectively. This resulted because the electron mobility decreased when the concentration of ZnO NPs was higher than the optimized value. Based on our results, the concentration of ZnO NPs was observed to play an important role in the electrical performance of the PbS QDs SWIR photodetector.

Optical characteristics of p-type ZnO epilayers doped with Sb by metalorganic chemical vapor deposition

  • Kwon, B.J.;Cho, Y.H.;Choi, Y.S.;Park, S.J.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.122-122
    • /
    • 2010
  • ZnO is a widely investigated material for the blue and ultraviolet solid-state emitters and detectors. It has been promoted due to a wide-band gap semiconductor which has large exciton binding energy of 60 meV, chemical stability and low radiation damage. However, there are many problems to be solved for the growth of p-type ZnO for practical device applications. Many researchers have made an efforts to achieve p-type conductivity using group-V element of N, P, As, and Sb. In this letter, we have studied the optical characteristics of the antimony-doped ZnO (ZnO:Sb) thin films by means of photoluminescence (PL), PL excitation, temperature-dependent PL, and time-resolved PL techniques. We observed donor-to-acceptor-pair transition at about 3.24 eV with its phonon replicas with a periodic spacing of about 72 meV in the PL spectra of antimony-doped ZnO (ZnO:Sb) thin films at 12 K. We also investigate thermal activation energy and carrier recombination lifetime for the samples. Our result reflects that the antimony doping can generate shallow acceptor states, leading to a good p-type conductivity in ZnO.

  • PDF

Synthesis of ZnS:Mn-Gly-C60 Nanocomposites and Their Photocatalytic Activity of Brilliant Green

  • Li, Jiulong;Ko, Weon Bae
    • Elastomers and Composites
    • /
    • v.53 no.2
    • /
    • pp.75-79
    • /
    • 2018
  • ZnS:Mn-glycine (ZnS:Mn-Gly) nanocomposites were synthesized by capping ZnS:Mn nanocomposites with glycine. Zinc sulfate heptahydrate ($ZnSO_4{\cdot}7H_2O$), glycine ($C_2H_5NO_2$), manganese sulfate monohydrate ($MnSO_4{\cdot}H_2O$), and sodium sulfide ($Na_2S$) were used as the source reagents. $ZnS:Mn-Gly-C_{60}$ nanocomposites were obtained by heating the ZnS:Mn-Gly nanocomposites and fullerene ($C_{60}$) at a 2:1 mass ratio in an electric furnace at $700^{\circ}C$ for 2 h. X-ray diffraction (XRD) was used to characterize the crystal structure of the synthesized nanocomposites. The photocatalytic activity of the $ZnS:Mn-Gly-C_{60}$ nanocomposites was evaluated, via the degradation of brilliant green (BG) dye under 254 nm irradiation, with a UV-vis spectrophotometer.

Morphological evolution of ZnO nanowires using varioussubstrates

  • Kar, J.P.;DAS, S.N.;Choi, J.H.;Myoung, J.M.
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.11a
    • /
    • pp.27.1-27.1
    • /
    • 2009
  • In recent years, ZnO nanostructures have drawn considerable attentions for the development of futuristic electronic devices due to their superior structural and optical properties. As the growth of ZnO nanowires by MOCVD is a bottom-up technique, the nature of substrates has a vital role for the dimension and alignment of the nanowires. However, in the pursuit of next generation ZnO based nanodevices, it would be highly preferred if well-ordered ZnO nanowires could be obtained on various substrates like sapphire, silicon, glass etc. Vertically aligned nanowires were grown on A and C-plane sapphire substrates, where as nanopencils were obtained on R-plane sapphire substrates. In addition, C-axis oriented vertical nanowires were also found using an interfacial layer(aluminum nitride film) on silicon substrates. On the other hand, long nanowires were found on Ga-doped ZnO film on glass substrates. Structural and optical properties of the ZnO nanowires on various substrates were also investigated.

  • PDF

Development of the 3 Dimensional ZnO Nanostructures for the Highly Efficient Quantum Dot Sensitized Solar Cells

  • Kim, Hui-Jin;Yong, Gi-Jung
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.672-672
    • /
    • 2013
  • 본 연구에서는 수열합성법을 기반으로 한 3차원 ZnO 나노구조의 합성을 통해 효율적인 양자점 감응형 태양전지로의 응용을 하고 그 특성을 평가하였다. 기존의 1차원 ZnO 나노구조의 경우 높은 전자이동도와 구조적으로 얻을 수 있는 방향성 있는 전자의 효율적인 전달을 통해 효과적인 광전극으로 많은 관심을 받아왔다. 하지만 나노파티클 기반의 필름에 비해 표면적이 크게 떨어지기 때문에 효과적인 흡광이 어렵다는 단점이 존재하여 높은 효율특성을 내지는 못하였다. 본 연구에서는 이러한 단점을 극복하면서 기존 ZnO 나노선의 장점을 극대화 하기 위해 성장시킨 ZnO 나노선 위에 추가적으로 가지를 형성하여 표면적 향상과 효과적인 전자전달 특성을 얻고자 하였다. 3차원 ZnO 나노구조는citrate 계열의 capping agent의 첨가를 통한 수열 합성법을 통해 1차원의 ZnO 나노선 위에 nanosheet 형식의 가지를 형성하였고 이는 빛의 효과적인 산란특성 및 표면적 향상을 통한 CdS, CdSe의 양자점 증착량을 증가시키는 효과를 얻을 수 있었다. 이러한 태양전지의 소자 특성은 SEM, TEM을 통한 구조 특성평가 및 DRS, J-V curve 및 IPCE를 통한 광학적 특성평가를 통해 확인하였다.

  • PDF