• Title/Summary/Keyword: Zn(II)

Search Result 565, Processing Time 0.036 seconds

Synthesis and Crystal Structures of Mn(II), Co(II), Ni(II), Cu(II), and Zn(II) Metal Complexes with NNO Functionalized Ligands

  • Jang, Yoon-Jung;Lee, Uk;Koo, Bon-Kweon
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.6
    • /
    • pp.925-929
    • /
    • 2005
  • Some new metal(II) complexes, $M^{II}L_2$ [M = Mn (1), Co (2), Ni (3), Cu (4), and Zn (5)] of 2-acetylpyridine benzoylhydrazone ligand (HL) containing trifunctional NNO-donor system have been synthesized and crystallographically characterized for the complex 1 and 5. The complexes consist of two ligands to give sixcoordinate, which are bonded to the metal atom on a meridional plane through acetylpyridine ring nitrogen, azomethine nitrogen, and benzoyl oxygen atoms, respectively. The coordination geometry for other complexes was identified on the basis of the physicochemical data by elemental analyses, FAB -MS, IR, $^1H$ NMR, and electronic spectral measurements. The resulting data indicated that the complexes are accordance with the above formulation.

Studies on Ion-exchange Chromatography of Elements in Special Nonferrous Alloys (비철특수합금에서 금속원소의 이온교환 크로마토그라프에 관한 연구)

  • Kyung Woong Lee;Young Jin Yoo
    • Journal of the Korean Chemical Society
    • /
    • v.29 no.2
    • /
    • pp.178-182
    • /
    • 1985
  • The purpose of this study was to develop a separation method of Zn(II), Cu(II) and Mg(II), by ion exchange chromatography using cation exchange resion (Dowex 50w${\times}$8, 80-100 mesh) and anion exchange (Amberlite IRA-400). Ion exchange resions were packed into 25 ${\times}$ 2cm ID column and flow rate was controlled to 0.30 ml/min. Good eluents for separation of nonferrous metal ions such as Zn(II), Cu(II), Mg(II) were as follow: 0.5M $NaNO_3$ (pH 3.1), 0.2~0.5M HCl + 50~60% Acetone, and 1M HAc + 0.1M NaAcf(pH 3.7) aqueous solution. The mixed solution of 0.1M NaAc(pH 3.7), 0.5M HCl + 50% Acetone were found to be the best eluent for step elution. Analysis of metals were determined by atomic absorption spectrophotometer. In addition, separated Zn(II) fraction was obtained by eluted with 0.12N HCl and 1.5N $NH_4OH$ aqueous solution. This solution was titrated by the E. D. T. A.

  • PDF

Synthesis and Properties of Polydentate Schiff Base Ligands having $N_nO_2$ (n=3~5) Donor Atoms and Bromine Substituent and their Transition Metal Complexes (여러자리 질소-산소계 시프염기 리간드와 전이금속착물의 합성 및 전기화학적 특성)

  • Kim, Sun-Deuk;Shin, Yun-Yeol;Park, Sung-Woo
    • Analytical Science and Technology
    • /
    • v.11 no.6
    • /
    • pp.440-447
    • /
    • 1998
  • Polydentate Schiff base ligands 5-Br-BSDT(bis(5-bromosalicylaldehyde)diethylenetriamine) having $N_3O_2$ atoms, 5-Br-BSTT(bis(5-bromosalicylaldehyde)triethylenetetramine) having $N_3O_2$ atoms, 5-Br-BSTP(bis(5-bromosalicylaldehyde)tetraethylenepentamine) having $N_3O_2$ atoms were synthesized. Stability constants of the complexes between these ligands and the metal ions such as Cu(II), Ni(II) and Zn(II) were measured in DMSO by a polarographic method. It was observed that all metal(II) ions employed in this study formed 1 : 1 complexes with Schiff base ligands. Stability constants for the ligands were in the order of Cu(II)>Ni(II)>Zn(II), and for complex formation were in the order of 5-Br-BSTP>5-Br-BSTT>5-Br-BSDT according to the increasing in the number of donor atoms. Both enthalpy and entropy changes are obtained in negative valves. Exothermicity for the complex formation indicated tight binding between the ligands and metal ions. The negative entropy change would be related to the fact that solvent molecules are strongly interacting with the metal complexes.

  • PDF

The Distribution Characteristics of Heavy Metals at Field and Upland Soils (경작지 및 산지토양의 층위별 중금속농도의 분포 특성)

  • Choi, I-Song;Park, Jea-Young;Oh, Jong-Min
    • Journal of the Korean earth science society
    • /
    • v.23 no.5
    • /
    • pp.406-415
    • /
    • 2002
  • Heavy metal concentrations (Cu(II), Zn(II), Pb(II) and Cd(II)) at field and upland soils were investigated with two extraction methods, 0.1mole L$^{-1}$ HCI extraction and HNO$_3$-HCIO$_4$ digestion, in order to estimate soil pollution and to understand their distribution and accumulation characteristics. Through an application of 0.1mole L$^{-1}$ HCI extraction method, the surface horizons of field soils were found to have higher concentrations of heavy metals (except Pb(II)) than those of upland soil. It was also seen that Cu(II), Zn(II) and Cd(II) were enriched in surface horizon of field soils, whereas upland soils did not show much difference across depth. When the method of HNO$_3$-HCIO$_4$ digestion was used, upland soils showed higher concentrations than those of other soils, and the distribution of heavy metals did not show much difference between horizons of all soils. From these results, it was recognized that, although total natural contents of heavy metals were the largest in upland soil, surface horizons of field soils became gradually polluted with heavy metals. Especially, Cd(II) is considered as a potential metallic pollutant in field soils because of its weak adsorption strength. Concentrations of heavy metals also seemed to be influenced by their adsorption characteristics. When we computed 0.1HCl$_{ext}$HNCL$_{dig}$ ratios to estimate the adsorption strengths of soil heavy metals, their adsorption strengths decreased on the order of Cu(II) > Zn(II)> Pb(II) > Cd(II). The distribution characteristics of heavy metals in field soil, especially Cd(II),are required more detail study because of its importance of land use and complicated mobilization characteristic.

Solvent Extraction of Zinc from Strong Hydrochloric Acid Solution with Alamine336

  • Lee, Man-Seung;Nam, Sang-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.7
    • /
    • pp.1526-1530
    • /
    • 2009
  • Solvent extraction reaction of Zn(II) by Alamine336 from strong HCl solution up to 10 M was identified by analyzing the data reported in the literature. The equilibrium constant of this reaction was estimated by considering the complex formation between zinc and chloride ion. The necessary thermodynamic parameters, such as equilibrium constant for the formation of complexes and the interaction parameters, were evaluated from the thermodynamic data reported in the literature. The following solvent extraction reaction and the equilibrium constant was obtained by considering the activity coefficients of solutes present in the aqueous phase with Bromley equation. $Zn^{2+}\;2Cl^{-}\;+\;R_3NHCl_{org}\;=\;ZnCl_3R_3NH_{org},\;K_{ex}\;=\;6.33\;{\times}\;10^2$ There was a good agreement between measured and calculated distribution coefficients of Zn(II).

Adsorption and Preconcentration of Some Heavy Metals by Resorcinol-Formaldehyde Resin (Resorcinol-formaldehyde 수지에 의한 중금속 이온의 흡착과 농축)

  • Park, Chan-Il;Cha, Ki-Won
    • Analytical Science and Technology
    • /
    • v.11 no.3
    • /
    • pp.174-178
    • /
    • 1998
  • A chelating resin was prepared by the reaction of formaldehyde and resorcinol. It possesses high adsorption selectivity for transition metal ions such as Pb(II) and Ni(II). The adsorption and desorption yields of Pb(II), Ni(II), Co(II), Fe(II) and Zn(II) were determined using batch method. The significant characteristics of the chelating resin is the exchange processes between its hydrogen and metal ions. The mechanism of metal adsorption and desorption seems to be the competing protonation and complexation reaction of the functional group of the resin. This resin was applied to the rapid concentration of trace amounts of these metal ions and to the separation of Pb(II) from other metal ions in bulk solution.

  • PDF

Characteristics of the ZnTe solar cell by the co-sputtering methods (Co-sputtering법으로 제작한 ZnTe 태양전지의 특성)

  • 장유진;김성우;최혁환;이명교;권태하
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.8 no.2
    • /
    • pp.440-448
    • /
    • 2004
  • In this paper, to make a solar cell of II-Ⅵ ZnTe compound semiconductor, we studied for the property of the transparent electrode(AZO) and Buffer layer(ZnO), and for reducing the energyband gap of optical absorber layer which are most effective on its efficiency. The ZnTe thin film was used the optical absorber layer of solar cell. Zn and Te were deposited using the co-sputtering method. The thin film was sputtered RF power of Zn/50W and Te/30W, respectively and a substrate temperature of foot under Ar atmosphere of 10mTorr. The energy band gap of the thin film was 1.73ev Then the thin film was annealed at $400^{\circ}C$ for 10sec under a vacuum atmosphere. The energy band gap of 1.67eV was achieved and the film composition ratio of Zn and Te was 32% and 68%. At the best condition, the Solar Cell was manufactured and the efficiency of 6.85% (Voc: 0.69V, Jsc: 21.408㎃/$cm^2$, Fill factor (FF): 0.46) was achieved.

ZnTe 완충층 두께에 따른 CdTe/ZnTe 양자점의 운반자 동역학

  • Kim, Su-Hwan;Lee, Ju-Hyeong;Choe, Jin-Cheol;Lee, Hong-Seok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.305-305
    • /
    • 2014
  • 양자점(Quantum dots)은 3차원적 운반자 구속과 낮은 전류와 높은 온도에서 작동하는 나노 크기의 전기적, 광학적 소자로 응용이 적합하기 때문에 그 특성을 이용한 단전자 트랜지스터, 적외선 검출기, 레이저, LED, 태양전지 등 반도체 소자로의 응용연구가 활발히 진행되고 있다. 특히 양자점의 낮은 임계전류밀도와 높은 차동 이득(differential gain), 그리고 고온에서 작동이 용이하여 양자점 레이저로 활용되고 있다. 이러한 분야에 양자점을 응용하기 위해서는 양자점의 운반자 동역학을 이해하고 양자점의 모양, 크기, 크기 분포와 같은 특성 조절이 필요하다. 또한 기존의 연구들은 III-V족 화합물 반도체 양자점에 대한 연구가 대부분이며, II-VI족으로 구성된 연구가 미흡한 상황이기 때문에 II-VI족 화합물 반도체 양자점에 대한 많은 연구가 필요한 상황이다. II-VI 족 화합물 반도체 양자점은 기존의 III-V 족 양자점보다 더 큰 엑시톤 결합에너지(exciton binding energy)를 가지고 있으며, 이러한 특성을 가지는 II-VI 족 화합물 반도체 양자점 중에서도 CdTe 양자점은 높은 엑시톤 결합에너지와 녹색 스펙트럼 영역을 필요로 하는 광학적 장치들에 응용 가능성이 높기 때문에 더욱 주목받고 있다. 본 연구에서는 분자 선속 에피 성장법(Molecular Beam Epitaxy; MBE)과 원자 층 교대 성장법(Atomic Layer Epitaxy; ALE)으로 CdTe/ZnTe 나노구조에서 ZnTe 완충층의 두께에 따른 운반자 동역학 및 광학적 특성을 연구 하였다. 저온 광루미네센스 측정(Photoluminescence; PL) 을 통하여 ZnTe 완충층 두께가 증가할수록 양자점의 광루미네센스 피크가 낮은 에너지로 이동함을 알 수 있었는데, 이는 ZnTe 완충층의 두께가 증가할수록 ZnTe 완충층과 CdTe 양자점의 격자 불일치(lattice mismatch)로 인한 구조 변형력이 감소하고 이에 따라 CdTe 양자점으로 가해지는 변형(Strain)이 감소하여 CdTe 양자점의 크기가 증가했기 때문이다. 그리고 ZnTe 완충층의 두께가 증가할수록 PL 세기가 증가함을 알 수 있었는데, 이는 ZnTe 완충층의 두께가 증가할수록 양자 구속 효과로부터 electronic state와 conduction band edge 사이의 에너지 차이의 증가 때문이다. 또한 시분해 광루미네센스 측정 결과 ZnTe의 두께가 증가할수록 양자점의 소멸 시간이 더 길게 측정되었는데, 이는 더 큰 양자점 일수록 엑시톤 오실레이터 강도가 감소하기 때문에 더 긴 소멸 시간을 나타내는 것을 확인할 수 있었다. 결과적으로 본 연구는 ZnTe 두께 변화를 통해 양자점의 에너지 밴드를 제어할 수 있으며, 양자점의 효율 향상을 할 수 있는 좋은 방법임을 제시하고 있다.

  • PDF

Ag(Ⅰ) Ion Selective Macrocyclic Ligands: The Complexation and Liquid Membrane Transport Phenomena of Benzylated Nitrogen-Oxygen Donor Macrocyclic Ligands (Ag(Ⅰ) 이온 선택성을 갖는 거대고리 리간드: 벤질 치환기를 갖는 질소-산소 주개 거대고리 리간드의 착물 형성과 액체막 이동 현상)

  • Kim, Jeong;Ahn, Tae Ho;Lee, Myoung Ro;Cho, Moon Hwan;Kim, Si Joong
    • Journal of the Korean Chemical Society
    • /
    • v.43 no.2
    • /
    • pp.167-171
    • /
    • 1999
  • An investigation of the interaction of Co(II), Ni(II), Cu(II), Zn(II), Cd(II), Pb(II) and Ag(I) with two N,N'-dibenzylated nitrogen-oxygen mixed donor macrocyclic ligands, has been carried out. Tle log K values for the respective complexes in 95% methanol have been determined potentiometrically. Both ligands have formed stable complex with only Cu(II) and Ag(I) ion. Transport measurements in a bulk liquid membrane system exhibited a very high selectivity of Ag(I) ion over the other metal ions used.

  • PDF

Examination of Various Metal Ion Sources for Reducing Nonspecific Zinc finger-Zn2+ Complex Formation in ESI Mass Spectrometry

  • Park, Soo-Jin;Park, Sun-Hee;Oh, Joo-Yeon;Han, Sang-Yun;Jo, Kyu-Bong;Oh, Han-Bin
    • Mass Spectrometry Letters
    • /
    • v.3 no.3
    • /
    • pp.82-85
    • /
    • 2012
  • The formation of zinc finger peptide-$Zn^{2+}$ complexes in electrospray ionization mass spectrometry (ESI-MS) was examined using three different metal ion sources: $ZnCl_2$, $Zn(CH_3COO)_2$, and $Zn(OOC(CHOH)_2COO)$. For the four zinc finger peptides (Sp1-1, Sp1-3, CF2II-4, and CF2II-6) that bind only a single $Zn^{2+}$ in the native condition, electrospray of apo-zinc finger in solution containing $ZnCl_2$ or $Zn(CH_3COO)_2$ resulted in the formation of zinc finger-$Zn^{2+}$ complexes with multiple zinc ions. This result suggests the formation of nonspecific zinc finger-$Zn^{2+}$ complexes. Zn(tartrate), $Zn(OOC(CHOH)_2COO)$, mainly produced specific zinc finger-$Zn^{2+}$ complexes with a single zinc ion. This study clearly indicates that tartrate is an excellent counter ion in ESI-MS studies of zinc finger-$Zn^{2+}$ complexes, which prevents the formation of nonspecific zinc finger-$Zn^{2+}$ complexes.