• 제목/요약/키워드: Zirconium Tube

검색결과 54건 처리시간 0.019초

경수로 핵연료 열-구조 연계 해석을 위한 다차원 간극 열전도도 모델 개발 (Development of Multidimensional Gap Conductance Model for Thermo-Mechanical Simulation of Light Water Reactor Fuel)

  • 김효찬;양용식;구양현
    • 대한기계학회논문집A
    • /
    • 제38권2호
    • /
    • pp.157-166
    • /
    • 2014
  • 경수로 핵연료가 원자로내에서 연소되는 동안 핵연료 펠릿에서부터 피복관까지 온도해석은 핵연료 안전 해석에 있어 중요한 요소이며, 경수로 핵연료 온도 해석을 하기 위해서는 간극 모델 개발이 필수적이다. 간극 열전도도는 특성상 간극 두께값에 의존적이게 되며 이러한 특성으로 인해 다차원 간극 열전도도 모델이 비선형적 거동을 보인다. 본 연구에서는 선형화된 다차원 간극 열전도도 모델 개발을 위해 가상 연결 간극 요소를 제안하였다. 제안된 간극 연결 요소에 간극 열전도도를 적용하기 위해 등가 열전달 계수를 정의하였다. 제안된 모듈을 평가하기 위해 상용코드 ANSYS APDL 을 이용하여 열-구조 연계 해석 모듈을 구현하였으며, 다양한 예제를 통해 정확성과 수렴성을 평가하였다.

Neutronic design and evaluation of the solid microencapsulated fuel in LWR

  • Deng, Qianliang;Li, Songyang;Wang, Dingqu;Liu, Zhihong;Xie, Fei;Zhao, Jing;Liang, Jingang;Jiang, Yueyuan
    • Nuclear Engineering and Technology
    • /
    • 제54권8호
    • /
    • pp.3095-3105
    • /
    • 2022
  • Solid Microencapsulated Fuel (SMF) is a type of solid fuel rod design that disperses TRISO coated fuel particles directly into a kind of matrix. SMF is expected to provide improved performance because of the elimination of cladding tube and associated failure mechanisms. This study focused on the neutronics and some of the fuel cycle characteristics of SMF by using OpenMC. Two kinds of SMFs have been designed and evaluated - fuel particles dispersed into a silicon carbide matrix and fuel particles dispersed into a zirconium matrix. A 7×7 fuel assembly with increased rod diameter transformed from the standard NHR200-II 9×9 array was also introduced to increase the heavy metal inventory. A preliminary study of two kinds of burnable poisons (Erbia & Gadolinia) in two forms (BISO and QUADRISO particles) was also included. This study found that SMF requires about 12% enriched UN TRISO particles to match the cycle length of standard fuel when loaded in NHR200-II, which is about 7% for SMF with increased rod diameter. Feedback coefficients are less negative through the life of SMF than the reference. And it is estimated that the average center temperature of fuel kernel at fuel rod centerline is about 60 K below that of reference in this paper.

스테인레스 강 용접중 발생하는 망간의 발생량 및 함량변화에 관한 연구 (Generation Rate and Content Variation of Manganese in Stainless Steel Welding)

  • 윤충식;김정한
    • 한국산업보건학회지
    • /
    • 제16권3호
    • /
    • pp.254-263
    • /
    • 2006
  • Manganese has a role as both toxic and essential in humans. Manganese is also an essential component in the welding because it increases the hardness and strength, prevents steel from cracking of welding part and acts as a deoxidizing agent to form a stable weld. In this study, manganese generation rate and its content was determined in flux cored arc welding on stainless steel. Domestic two products and foreign four products of flux cored wires were tested in the well designed fume generation chamber as a function of input power. Welding fume was measured by gravimetric method and metal manganese was determined by inductively coupled plasma-atomic emission spectrophotometer. The outer shell of the flux cored wire tube and inner flux were analyzed by scanning electron microscopy to determine their metal compositions. Manganese generation rate($FGR_{mn}$) was increased as the input power increased. It was 16.3 mg/min at the low input power, 38.1 mg/min at the optimal input power, and up to 55.4 mg/min at the high input power. This means that $FGR_{mn}$ is increased at the work place if welder raise the current and/or voltage for the high productivity. The slope coefficient of $FGR_{mn}$ was smaller than that of the generation rate of total fume(FGR). Also, the correlation coefficient of $FGR_{mn}$ was 0.65 whereas that of FGR is 0.91. $FGR_{mn}$ was equal or higher in the domestic products than that of the foreign products although FGR was similar. From the electron microscopic analytical data, we concluded that outer shell of the wire was composed mainly of iron, chromium, nickel and less than 1.2 % of manganese. There are many metal ingredients such as iron, silica, manganese, zirconium, titanium, nickel, potassium, and aluminum in the inner flux but they were not homogeneous. It was found that both $FGR_{mn}$ and content of manganese was higher and more varied in domestic flux cored wires than those of foreign products. To reduce worker exposure to fumes and hazardous component at the source, further research is needed to develop new welding filler materials that improve the quality of flux cored wire in respect to these points. Welder should keep in mind that the FGR, $FGR_{mn}$ and probably the generation rate of other hazardous metals were increased as the input power increase for the high productivity.

지르코니아 세라믹과 레진 시멘트의 결합강도 (BOND STRENGTH OF RESIN CEMENTS TO ZIRCONIA CERAMIC)

  • 장문숙;김지혜;조석규;복원미;송광엽;박주미
    • 대한치과보철학회지
    • /
    • 제43권4호
    • /
    • pp.426-437
    • /
    • 2005
  • Statement of problem : Although zirconium oxide ceramics are more and more commonly used in restorative dentistry, for many clinical applications only limited data can be found in the literature. However it is quite clear that hydrofluoric acid etching is impossible with zirconia ceramics. Therefore, other bonding techniques are required in order to lute these materials adhesively. Purpose : The purpose or this study was to evaluate the effects of surface treatments on shear bond strengths between two resin cements and a zirconia ceramic. Materials and methods : Experimental industrially manufactured yttrium-oxide-partially-stabilized zirconia ceramic discs (Adens, Korea) were used for this study. The ceramic specimens divided into five experimental groups and a control group (as received). Five surface treatments were studied 1) sandblasting with 110$\mu$m $Al_2O_3$ at 3 bars pressure 13 seconds at a distance of 10 mm, 2) flame-treated with the Silano-Pen for 5 $s/cm^3$, 3) grinding with a diamond bur. 4) sandblasting + Silano-Pen treatment, 5) diamond bur preparation + Silano-Pen treatment. Acrylic plastic tube (5 mm in height and 3 mm in diameter) were filled with composite to fabricate composite cylinders The composite cylinders were bonded to the ceramic specimens with either Superbond C&B or Panavia F resin luting agents. All cemented specimens were tested under shear loading until fracture on universal testing machine at a crosshead speed 1mm/min; the maximum load at fracture was recorded. Sheat bond strength data were analyzed with oneway analysis of variance and Tukey HSD tests (P<.05). Treated ceramic surfaces and fracture surfaces after shear testing were examined morphologically using scanning electron microscope. Results: Ceramic surface treatment with Silano-Pen after sandblasting improved the bond strength of Superbond C&B resin cement. Supevbond C& B resin cement at Silano-Pen aiker sandblasting($27.4{\pm}3.8MPa$) showed statistically higher shear bond strength than the others. Conclusion: Within the limitation of this study, Superbond C& &B resin cement are suitable for cementation of zirconia ceramics and flame-treated with the Silano-Pen after sandblasting is required to enhance the bond strength.