• 제목/요약/키워드: Zirconia surface

검색결과 396건 처리시간 0.027초

마그네슘 합금 표면의 지르코니아 분말 레이저 소결과정에서 조사 패턴이 접합 계면 품질에 미치는 영향 (Effect of Laser Processing Patterns on the Bonding Interface Quality during Laser Sintering of Magnesium Alloys with Zirconia)

  • 윤상우;김주한
    • 한국기계가공학회지
    • /
    • 제20권2호
    • /
    • pp.51-57
    • /
    • 2021
  • The quality of the ceramic sintered coating on a metal surface through laser surface treatment is affected by the laser irradiation pattern. Depending on the laser irradiation pattern, the amount of residual stress and heat applied or accumulated on the surface increases or decreases, affecting the thickness attained in the ceramic sintering area. When the heat energy accumulated in the sintering area is high, the ceramic and the metal alloy melt and sufficiently mix to form a homogeneous and thick bonding interface. In this study, the thermal energy accumulation in the region sintered with zirconia was controlled using four types of laser processing patterns. The thickness of the diffusion region is analyzed by laser-induced breakdown spectroscopy of Mg-ZrO2 generated by laser sintering zirconia powder on the magnesium alloy surface. On the basis of the analysis of the Mg and Zr present in the sintered region through LIBS, the effect of the irradiation pattern on the sintering quality is confirmed by comparing and analyzing the heat and mass transfer tendency of the diffusion layer and the degree of diffusion according to the irradiation pattern. The derived diffusion coefficients differed by up to 9.8 times for each laser scanning pattern.

지르코니아의 거칠기 증가를 위한 다양한 표면처리방법이 레진 시멘트와의 전단결합강도에 미치는 영향 (Effects of various zirconia surface treatments for roughness on shear bond strength with resin cement)

  • 배강호;배지현;허중보;최재원
    • 대한치과기공학회지
    • /
    • 제42권4호
    • /
    • pp.326-333
    • /
    • 2020
  • Purpose: The purpose of this study was to evaluate the effects of various zirconia surface treatment methods on shear bond strength with resin cements. Methods: We prepared 120 cylindrical zirconia specimens (⌀10 mm×10 mm) using computer-aided design/computer-aided manufacturing (CAD/CAM). Each specimen was randomly subjected to one of four surface treatment conditions: (1) no treatment (control), (2) airborne-particle abrasion with 50 ㎛ of Al2O3 (A50), (3) airborne-particle abrasion with 125 ㎛ of Al2O3 (A125), and (4) ZrO2 slurry (ZA). Using a polytetrafluoroethylene mold (⌀6 mm×3 mm), we applied three resin cements (Panavia F 2.0, Super-Bond C&B, and Variolink N) to each specimen. The shear bond strength tests were performed in a universal testing machine. The surfaces of representative specimens of each group were evaluated under scanning electron microscope. We used one-way analysis of variance (ANOVA), two-way ANOVA, and post hoc Tukey honest significant difference test to analyze the data. Results: In the surface treatment method, the A50 group showed the highest bond strength, followed by A125, ZA, and control groups; however, no significant difference was observed between A50 and A125, A125 and ZA, and ZA and control (p>0.05). Among the resin cements, Super-Bond C&B showed the highest shear bond strength, followed by Panavia F 2.0 and Variolink N (p<0.05). Conclusion: Within the limitations of this study, application of airborne-particle abrasion and ZrO2 slurry improved the shear bond strength of resin cement on zirconia.

Effect of universal adhesive pretreatments on the bond strength durability of conventional and adhesive resin cements to zirconia ceramic

  • Tae-Yub Kwon;Seung-Hee Han;Du-Hyeong Lee;Jin-Woo Park;Young Kyung Kim
    • The Journal of Advanced Prosthodontics
    • /
    • 제16권2호
    • /
    • pp.105-114
    • /
    • 2024
  • PURPOSE. This study aimed to evaluate the effect of pretreatment of three different universal adhesives (Single Bond Universal [SBU], All-Bond Universal [ABU], and Prime&Bond universal [PBU]) on the bonding durability of an adhesive (Panavia F 2.0, PF) and a conventional (Duo-Link, DL) resin cements to air-abraded zirconia. MATERIALS AND METHODS. Rectangular-shaped zirconia specimens were prepared. The chemical composition and surface energy parameters of the materials were studied by Fourier transform infrared spectroscopy and contact angle measurement, respectively. To evaluate resin bonding to the zirconia, all the bonding specimens were immersed in water for 24 h and the specimens to be aged were additionally thermocycled 10000 times before the shear bond strength (SBS) test. RESULTS. The materials showed different surface energy parameters, including the degree of hydrophilicity/hydrophobicity. While the DL/CON (no pretreatment) showed the lowest SBS and a significant decrease in the value after thermocycling (P < .001), the PF/CON obtained a higher SBS value than the DL/CON (P < .001) and no decrease even after thermocycling (P = .839). When the universal adhesives were used with DL, their SBS values were higher than the CON (P < .05), but the trend was adhesive-specific. In conjunction with PF, the PF/SBU produced the highest SBS followed by the PF/ABU (P = .002), showing no significant decrease after thermocycling (P > .05). The initial SBS of the PF/PBU was similar to the PF/CON (P = .999), but the value decreased after thermocycling (P < .001). CONCLUSION. The universal adhesive pretreatment did not necessarily show a synergistic effect on the bonding performance of an adhesive resin cement, whereas the pretreatment was beneficial to bond strength and durability of a conventional resin cement.

소결 전 지르코니아 표면처리와 라이너 사용에 따른 지르코니아와 열가압성형도재의 전단결합강도 (Effects of Pre-Sintering Surface Treatment and Liner Application on the Shear Bond Strength of Zirconia and Pressable Ceramic)

  • 이광영;조미향;최성민
    • 대한치과기공학회지
    • /
    • 제37권3호
    • /
    • pp.121-127
    • /
    • 2015
  • Purpose: This study was intended to investigate the effect of applying liner for chemical bonding and physical surface roughness created on zirconia by using a sandpaper before sintering on the bond strength between the two materials. Methods: Zirconia blocks were cut using a low-speed cutter. Plate-shaped specimen($6mm{\times}6mm{\times}3mm$) was fabricated by sintering after giving surface roughness according to four kinds of sandpapers. Depending on whether or not to use liner, 60 specimens were divided into two groups ZN(non-liner), ZL(liner), and the two groups were subdivided into four groups respectively in accordance with sandpaper used, totaling eight groups (n=10). The surface roughness (Ra) values and shapes before sintering were observed, and shear bond strength after pressing ceramic plasticity was measured with a universal testing machine. For a test of the significance, a one-way ANOVA was performed, and Tukey's multiple comparison test was conducted. Results: The observation of the surface roughness was SB04($2.22{\pm}1.16{\mu}m$), SB08($2.98{\pm}0.33{\mu}m$), SB12($2.44{\pm}1.32{\mu}m$), SB20($2.34{\pm}0.59{\mu}m$) and SA04($2.34{\pm}0.67{\mu}m$), SA08($1.28{\pm}0.90{\mu}m$), SA12($2.03{\pm}1.60{\mu}m$), SA20($2.19{\pm}1.73{\mu}m$). In the case of ZN Group, the shear bond strength was ZN04($23.26{\pm}3.83MPa$), ZN08($21.76{\pm}2.33MPa$), ZN12($20.49{\pm}3.01MPa$), ZN20($24.98{\pm}4.22MPa$)(p<0.05). As for ZL Group, the shear bond strength was ZL04($25.09{\pm}5.67MPa$), ZL08($22.98{\pm}2.26MPa$), ZL12($21.54{\pm}5.70MPa$), ZL20($23.98{\pm}3.23MPa$)(p<0.05). Conclusion: The research results showed that the bond strength of Zirconia core and Pressing ceramic was further improved by physical surface treatment before sintering, rather than by chemical bonding through liner surface treatment.

연삭된 지르코니아의 표면 특성 (Surface Characteristics of the Ground Zirconia)

  • 김사학
    • 대한치과기공학회지
    • /
    • 제33권4호
    • /
    • pp.323-329
    • /
    • 2011
  • Purpose: This study was conducted to examine the phase transition according to the zirconia surface treatment. Methods: The specimens were divided to four groups. The first group was sintered at $1,500^{\circ}C$ and ground; the second group was sintered at $700^{\circ}C$, ground, and sintered at $1,500^{\circ}C$; the third group was sintered at $1,500^{\circ}C$, ground, and $110{\mu}m$-sandblasted; and the fourth group was sintered at $1,500^{\circ}C$, ground, $110{\mu}m$-sandblasted, treated with 9.5% hydrofluoric acid, and ultrasonic cleaner-washed for two minutes. The monoclinic fractions were measured, and the surface was observed via SEM. Results: The monoclinic fraction was $0.13{\pm}0.19%$ in the control group Zr1, $1.91{\pm}0.15%$ in the experimental group Zr2, $7.71{\pm}0.34%$ in Zr3, and $8.39{\pm}0.25%$ in Zr4. On the surface, the phase transition hardly occurred in the control group Zr1, but it increasingly occurred in the experimental groups Zr3 and Zr4. Conclusion: The monoclinic fraction was high in the experimental groups Zr3 and Zr4. The phase transition did not occur in the control group, but increasingly occurred in the experimental groups.

화학적 공정에 의한 나노 지르코니아 합성 및 광학디스플레이 응용 (Synthesis of Nano-Zirconia by Chemical Process and Its Application to Optical Display)

  • 박정주;김봉구;손정훈;정연길
    • 한국재료학회지
    • /
    • 제30권11호
    • /
    • pp.609-614
    • /
    • 2020
  • 3 mol% yttria-doped stabilized zirconia (3YSZ) is synthesized by a solvothermal process, and its characteristics are investigated using various methods. Also, the dispersibility of synthesized 3YSZ nanoparticles is observed with the species of surface modifier. The 3YSZ nano sol prepared with an optimum condition is employed in prism coating and its properties are evaluated. The synthesized 3YSZ nanoparticles show a globular shape with about 10 to 20 nm crystallite size. The mixed phases with the nano sol show a high specific surface of 178 ㎡/g. The prism sheet coated with the 3YSZ nano sol present an excellent refractive index, transmittance, and luminance; refractive index is 1.603, transmittance is 90.2 %, and luminance of coating film is improved by 5.9 % compared to that of the film without 3YSZ nano sol. It is verified that the surface modified 3YSZ is suitable as the prism sheet for optical displays.

Bond strength of veneer ceramic and zirconia cores with different surface modifications after microwave sintering

  • Saka, Muhammet;Yuzugullu, Bulem
    • The Journal of Advanced Prosthodontics
    • /
    • 제5권4호
    • /
    • pp.485-493
    • /
    • 2013
  • PURPOSE. To evaluate the effects of surface treatments on shear bond strength (SBS) between microwave and conventionally sintered zirconia core/veneers. MATERIALS AND METHODS. 96 disc shaped Noritake Alliance zirconia specimens were fabricated using YenaDent CAM unit and were divided in 2 groups with respect to microwave or conventional methods (n=48/group). Surface roughness (Ra) evaluation was made with a profilometer on randomly selected microwave (n=10) and conventionally sintered (n=10) cores. Specimens were then assessed into 4 subgroups according to surface treatments applied (n=12/group). Groups for microwave (M) and conventionally (C) sintered core specimens were as follows; $M_C$,$C_C$: untreated (control group), $M_1,C_1:Al_2O_3$ sandblasting, $M_2,C_2$:liner, $M_3,C_3:Al_2O_3$ sandblasting followed by liner. Veneer ceramic was fired on zirconia cores and specimens were thermocycled (6000 cycles between $5^{\circ}-55^{\circ}C$). All specimens were subjected to SBS test using a universal testing machine at 0.5 mm/min, failure were evaluated under an optical microscope. Data were statistically analyzed using Shapiro Wilk, Levene, Post-hoc Tukey HSD and Student's t tests, Two-Way-Variance- Analysis and One-Way-Variance-Analysis (${\alpha}$=.05). RESULTS. Conventionally sintered specimens ($1.06{\pm}0.32{\mu}m$) showed rougher surfaces compared to microwave sintered ones ($0.76{\pm}0.32{\mu}m$)(P=.046), however, no correlation was found between SBS and surface roughness (r=-0.109, P=.658). The statistical comparison of the shear bond strengths of $C_3$ and $C_1$ group (P=.015); $C_C$ and $M_C$ group (P=.004) and $C_3$ and $M_3$ group presented statistically higher (P=.005) values. While adhesive failure was not seen in any of the groups, cohesive and combined patterns were seen in all groups. CONCLUSION. Based on the results of this in-vitro study, $Al_2O_{3-}$ sandblasting followed by liner application on conventionally sintered zirconia cores may be preferred to enhance bond strength.

Surface changes of metal alloys and high-strength ceramics after ultrasonic scaling and intraoral polishing

  • Yoon, Hyung-In;Noh, Hyo-Mi;Park, Eun-Jin
    • The Journal of Advanced Prosthodontics
    • /
    • 제9권3호
    • /
    • pp.188-194
    • /
    • 2017
  • PURPOSE. This study was to evaluate the effect of repeated ultrasonic scaling and surface polishing with intraoral polishing kits on the surface roughness of three different restorative materials. MATERIALS AND METHODS. A total of 15 identical discs were fabricated with three different materials. The ultrasonic scaling was conducted for 20 seconds on the test surfaces. Subsequently, a multi-step polishing with recommended intraoral polishing kit was performed for 30 seconds. The 3D profiler and scanning electron microscopy were used to investigate surface integrity before scaling (pristine), after scaling, and after surface polishing for each material. Non-parametric Friedman and Wilcoxon signed rank sum tests were employed to statistically evaluate surface roughness changes of the pristine, scaled, and polished specimens. The level of significance was set at 0.05. RESULTS. Surface roughness values before scaling (pristine), after scaling, and polishing of the metal alloys were $3.02{\pm}0.34{\mu}m$, $2.44{\pm}0.72{\mu}m$, and $3.49{\pm}0.72{\mu}m$, respectively. Surface roughness of lithium disilicate increased from $2.35{\pm}1.05{\mu}m$ (pristine) to $28.54{\pm}9.64{\mu}m$ (scaling), and further increased after polishing ($56.66{\pm}9.12{\mu}m$, P<.05). The zirconia showed the most increase in roughness after scaling (from $1.65{\pm}0.42{\mu}m$ to $101.37{\pm}18.75{\mu}m$), while its surface roughness decreased after polishing ($29.57{\pm}18.86{\mu}m$, P<.05). CONCLUSION. Ultrasonic scaling significantly changed the surface integrities of lithium disilicate and zirconia. Surface polishing with multi-step intraoral kit after repeated scaling was only effective for the zirconia, while it was not for lithium disilicate.

Gene expression of MC3T3-E1 osteoblastic cells on titanium and zirconia surface

  • Gong, Soon-Hyun;Lee, Heesu;Pae, Ahran;Noh, Kwantae;Shin, Yong-Moon;Lee, Jung-Haeng;Woo, Yi-Hyung
    • The Journal of Advanced Prosthodontics
    • /
    • 제5권4호
    • /
    • pp.416-422
    • /
    • 2013
  • PURPOSE. This study was performed to define attachment and growth behavior of osteoblast-like cells and evaluate the gene expression on zirconia compared to titanium. MATERIALS AND METHODS. MC3T3-E1 cells were cultured on (1) titanium and (2) zirconia discs. The tetrazolium-based colorimetric assay (MTT test) was used for examining the attachment of cells. Cellular morphology was examined by scanning electron microscopy (SEM) and alkaline phosphatase (ALP) activity was measured to evaluate the cell differentiation rate. Mann-Whitney test was used to assess the significance level of the differences between the experimental groups. cDNA microarray was used for comparing the 20215 gene expressions on titanium and zirconia. RESULTS. From the MTT assay, there was no significant difference between titanium and zirconia (P>.05). From the SEM image, after 4 hours of culture, cells on both discs were triangular or elongated in shape with formation of filopodia. After 24 hours of culture, cells on both discs were more flattened and well spread compared to 4 hours of culture. From the ALP activity assay, the optical density of E1 cells on titanium was slightly higher than that of E1 cells on zirconia but there was no significant difference (P>.05). Most of the genes related to cell adhesion showed similar expression level between titanium and zirconia. CONCLUSION. Zirconia showed comparable biological responses of osteoblast-like cells to titanium for a short time during cell culture period. Most of the genes related to cell adhesion and signal showed similar expression level between titanium and zirconia.

Biaxial flexural strength of bilayered zirconia using various veneering ceramics

  • Chantranikul, Natravee;Salimee, Prarom
    • The Journal of Advanced Prosthodontics
    • /
    • 제7권5호
    • /
    • pp.358-367
    • /
    • 2015
  • PURPOSE. The aim of this study was to evaluate the biaxial flexural strength (BFS) of one zirconia-based ceramic used with various veneering ceramics. MATERIALS AND METHODS. Zirconia core material (Katana) and five veneering ceramics (Cerabien ZR; CZR, Lava Ceram; LV, Cercon Ceram Kiss; CC, IPS e.max Ceram; EM and VITA VM9; VT) were selected. Using the powder/liquid layering technique, bilayered disk specimens (diameter: 12.50 mm, thickness: 1.50 mm) were prepared to follow ISO standard 6872:2008 into five groups according to veneering ceramics as follows; Katana zirconia veneering with CZR (K/CZR), Katana zirconia veneering with LV (K/LV), Katana zirconia veneering with CC (K/CC), Katana zirconia veneering with EM (K/EM) and Katana zirconia veneering with VT (K/VT). After 20,000 thermocycling, load tests were conducted using a universal testing machine (Instron). The BFS were calculated and analyzed with one-way ANOVA and Tukey HSD (${\alpha}$=0.05). The Weibull analysis was performed for reliability of strength. The mode of fracture and fractured surface were observed by SEM. RESULTS. It showed that K/CC had significantly the highest BFS, followed by K/LV. BFS of K/CZR, K/EM and K/VT were not significantly different from each other, but were significantly lower than the other two groups. Weibull distribution reported the same trend of reliability as the BFS results. CONCLUSION. From the result of this study, the BFS of the bilayered zirconia/veneer composite did not only depend on the Young's modulus value of the materials. Further studies regarding interfacial strength and sintering factors are necessary to achieve the optimal strength.