• Title/Summary/Keyword: Zirconia ceramic

Search Result 626, Processing Time 0.027 seconds

Preparation and Characterization of Ceria Stabilized Tetragonal Zirconia Polycrystals(I) : Effect of CeO2 Contents on the Mechanical Properties of Ce-TZP (세리아 안정화 지르코니아의 제조 및 특성(I) : CeO2첨가량 변화에 따른 Ce-TZP의 기계적 특성)

  • Jung, Seung-Hwa;Kang, Jong-Bong
    • Korean Journal of Materials Research
    • /
    • v.20 no.7
    • /
    • pp.379-384
    • /
    • 2010
  • The usual ceramic process of mixing and milling in state of oxides $ZrO_2$ and $CeO_2$ was adopted in this study in a wet process to manufacture Ce-TZP. $CeO_2$-$ZrO_2$ ceramics containing 8~20 mol% $CeO_2$ were made by heat treatment at $1250\sim1500^{\circ}C$ for 5hr. The maximum dispersion point of every slurry manufactured with a mixture of $ZrO_2$ and $CeO_2$ was neat at pH10. A stable slurry with average particle size of 90 nm can be manufactured when it is dispersed with the use of ammonia water and polycarboxylic acid ammonium. The sintered Ce-TZP ceramics manufactured with the addition of $CeO_2$ in a concentration of less than 10 mol% progressed to the fracture of the specimen due to the existence of a monoclinic phase of more than 30% at room temperature. More than 99% of the tetragonal phase was created for the sintered body with the addition of $CeO_2$ beyond 18 mol%, but the degradation of the mechanical properties on the entire specimen was brought about due to the $CeO_2$ existing in a percentage above 3%. Consequently, the optimal Ce-TZP level combined in the oxide state was identified to be 16 mol% of $CeO_2$ contents.

Dependence of Phase Stability of Tetragonal Zirconia Polycrystal on Dopants

  • Chon, Uong
    • The Korean Journal of Ceramics
    • /
    • v.4 no.4
    • /
    • pp.297-303
    • /
    • 1998
  • The effect of aliovalent dopants, $ Nb_2O_5$ and MnO, on the phase stability of 12 mol% ceria partially-stabilized zirconia (Ce-TZP) polycrystals was studied. Both dopants (MnO and $ Nb_2O_5$) significantly increased the stability of the tetragonal zirconia phase (Mb temperature lower than liquid nitrogen temperature). The enhancement of the stability of the tetragonal phase in Ce-TZP doped with 1 mol% of Mno(Ce-TZP/MnO) andCe-TZP doped with 1 mol% of $ Nb_2O_5$(Ce-TZP/$ Nb_2O_5$) were explained by the significant reduction of the driving force, -${\Delta}$Gchem, for the tetragonal-to-mono-clinic phase transformation caused by the addition of MnO and $ Nb_2O_5$. The enhanced stability of the tetragonal phase in the Ce-TZP and Al2O3 composite (Ce-TZP/$Al_2O_3$) is believed to be caused by smaller grain size, moderate reduction in the chemical driving force and increase in the strain energy barrier to the transformation. Mechanical properties of the Ce-TZP and the Ce-TZP/$Al_2O_3$ with (i) the same grain size and (ii) the same Mb temperature were examined by measuring stress-strain behavior in 3 point bending. The Ce-TZP/$Al_2O_3$ composite doped with 1.3w% MnO (Ce-TZP/$Al_2O_3$/MnO), which had the same grain size as the Ce-TZP and De-TZP/$Al_2O_3$ showed more transformation plasticity than either the Ce-TZP or the Ce-TZP/$Al_2O_3$ composite. The Ce-TZP wihch had the same Mb temperature as that of the Ce-TZP/$Al_2O_3$/MnO did not show any transformation plasticity.

  • PDF

Monolithic zirconia crowns: effect of thickness reduction on fatigue behavior and failure load

  • Prott, Lea Sophia;Spitznagel, Frank Akito;Bonfante, Estevam Augusto;Malassa, Meike Anne;Gierthmuehlen, Petra Christine
    • The Journal of Advanced Prosthodontics
    • /
    • v.13 no.5
    • /
    • pp.269-280
    • /
    • 2021
  • PURPOSE. The objective of this study was to evaluate the effect of thickness reduction and fatigue on the failure load of monolithic zirconia crowns. MATERIALS AND METHODS. 140 CAD-CAM fabricated crowns (3Y-TZP, inCorisTZI, Dentsply-Sirona) with different ceramic thicknesses (2.0, 1.5, 1.0, 0.8, 0.5 mm, respectively, named G2, G1.5, G1, G0.8, and G0.5) were investigated. Dies of a mandibular first molar were made of composite resin. The zirconia crowns were luted with a resin composite cement (RelyX Unicem 2 Automix, 3M ESPE). Half of the specimens (n = 14 per group) were mouth-motion-fatigued (1.2 million cycles, 1.6 Hz, 200 N/ 5 - 55℃, groups named G2-F, G1.5-F, G1-F, G0.8-F, and G0.5-F). Single-load to failure was performed using a universal testing-machine. Fracture modes were analyzed. Data were statistically analyzed using a Weibull 2-parameter distribution (90% CI) to determine the characteristic strength and Weibull modulus differences among the groups. RESULTS. Three crowns (21%) of G0.8 and five crowns (36%) of G0.5 showed cracks after fatigue. Characteristic strength was the highest for G2, followed by G1.5. Intermediate values were observed for G1 and G1-F, followed by significantly lower values for G0.8, G0.8-F, and G0.5, and the lowest for G0.5-F. Weibull modulus was the lowest for G0.8, intermediate for G0.8-F and G0.5, and significantly higher for the remaining groups. Fatigue only affected G0.5-F. CONCLUSION. Reduced crown thickness lead to reduced characteristic strength, even under failure loads that exceed physiological chewing forces. Fatigue significantly reduced the failure load of 0.5 mm monolithic 3Y-TZP crowns.

Surface Modification and Bioactivity Improvement of 3Y-TZP Substrate by Spray Coating of Hydroxyapatite/Fosterite Composite Powder (하이드록시아파타이트/포스터라이트 복합분말의 분사코팅에 의한 3Y-TZP 기판의 표면개질과 생체활성 증진)

  • Yu Hyeon Yun;Jong Kook Lee
    • Korean Journal of Materials Research
    • /
    • v.33 no.8
    • /
    • pp.337-343
    • /
    • 2023
  • 3Y-TZP (3 mol% yttria-stabilized tetragonal zirconia polycrystals) ceramics have excellent mechanical properties including high fracture toughness, good abrasion resistance as well as chemical and biological stability. As a result, they are widely used in mechanical and medical components such as bearings, grinding balls, and hip implants. In addition, they provide excellent light transmittance, biocompatibility, and can match tooth color when used as a dental implant. Recently, given the materials' resemblance to human teeth, these ceramics have emerged as an alternative to titanium implants. Since the introduction of CAD/CAM in the manufacture of ceramic implants, they've been increasingly used for prosthetic restoration where aesthetics and strength are required. In this study, to improve the surface roughness of zirconia implants, we modified the 3Y-TZP surface with a biocomposite of hydroxyapatite and forsterite using room temperature spray coating methods, and investigated the mixed effect of the two powders on the evolution of surface microstructure, i.e., coating thickness and roughness, and biological interaction during the in vitro test in SBF solution. We compared improvement in bioactivity by observing dissolution and re-precipitation on the specimen surface. From the results of in vitro testing in SBF solution, we confirmed improvement in the bioactivity of the 3Y-TZP substrate after surface modification with a biocomposite of hydroxyapatite and forsterite. Surface dissolution of the coating layer and the precipitation of new hydroxyapatite particles was observed on the modified surface, indicating the improvement in bioactivity of the zirconia substrate.

Effect of orthodontic bonding with different surface treatments on color stability and translucency of full cubic stabilized zirconia after coffee thermocycling

  • Yasamin Babaee Hemmati;Hamid Neshandar Asli;Alireza Mahmoudi Nahavandi;Nika Safari;Mehran Falahchai
    • The korean journal of orthodontics
    • /
    • v.53 no.3
    • /
    • pp.139-149
    • /
    • 2023
  • Objective: To assess the color stability and translucency of full cubic stabilized zirconia (FSZ) following orthodontic bonding with different surface treatments and coffee thermocycling (CTC). Methods: This in vitro study was conducted on 120 disc-shaped specimens of FSZ. Thirty specimens were selected as the control group and remained intact. The remaining specimens were randomly divided into three groups based on the type of surface treatment (n = 30): airborne particle abrasion (APA), silica-coating (CoJet), and carbon dioxide (CO2) laser. After metal bracket bonding in the test groups, debonding and polishing were performed. Subsequently, all specimens underwent CTC (10,000 cycles). Color parameters, color difference (ΔE00), and translucency parameter (TP) were measured three times at baseline (t0), after debonding and polishing (t1), and after CTC (t2). Data were statistically analyzed (α = 0.05). Results: Significant difference existed among the groups regarding ΔE00t0t2 (p < 0.001). The APA group showed minimum (ΔE00 = 1.15 ± 0.53) and the control group showed maximum (ΔE00 = 0.19 ± 0.02) color stability, with no significant difference between the laser and CoJet groups (p = 0.511). The four groups were significantly different regarding ΔTPt0t2 (p < 0.001). Maximal increases in TP were noted in the CoJet (1.00 ± 0.18) and APA (1.04 ± 0.38) groups while minimal increase was recorded in the control group (0.1 ± 0.02). Conclusions: Orthodontic treatment makes zirconia restorations susceptible to discoloration and increased translucency. Nonetheless, the recorded ΔE00 and ΔTP did not exceed the acceptability threshold.

Adhesion Characteristics of Polymers and Ceramic Surface Coated on Metal by Plasma Spray (플라즈마 용사법에 의한 금속면에 세라믹 코팅된 표면과 범용고분자와의 접착특성)

  • Lee, Gyeong-Hui;Gwon, Sun-Hun;Jo, Won-Je;Ha, Chang-Sik
    • Korean Journal of Materials Research
    • /
    • v.9 no.7
    • /
    • pp.724-734
    • /
    • 1999
  • The adhesion characteristics of the thermoplastic resins such as PE, PP PVC, PET and PS were investigated on the surfaces of conventional steel (SS41), steel (SS41P) treated with ultrasonic waves and the SS41P coated with several ceramic powders (SS41PC) by the plasma spray. Alumina (Al$_2$O$_3$), alumina titania (Al$_2$O$_3$95%, TiO$_2$ 5%) and zirconia yttria (ZrO$_2$ 95%, $Y_2$O$_3$5% ) were used for the materials plasma spray The morphologies, surface hardness, surface roughness, and contact angles on SS41, SS41P, and SS41PC were examined. The tensile shear strength and peel strength of the polymers which were attached to the surfaces of ceramics coated on SS41P also were measured. The tensile shear strength and peel strength of polymers adhered to ceramic surface coated on steel were found to be stronger than those of conventional steel. The tensile shear strength and peel strength of the polymers adhered on the surfaces of ceramics coated steel increased in the following order PE > PET > PP > PS > PVC. The high adhesion strength of PE may be attributed to the surface roughness and its anchor effect on the ceramic surface.

  • PDF

A Study on the Shear Bond Strength of Veneering Ceramics to the Lithium Disilicate (IPS e.max CAD) Core (Lithium Disilicate (IPS e.max CAD) 코어와 전장 도재 사이의 전단결합강도에 관한 연구)

  • Kim, Ki-Baek;Kim, Jae-Hong
    • Journal of dental hygiene science
    • /
    • v.13 no.3
    • /
    • pp.290-295
    • /
    • 2013
  • The purpose of this study was to investigate the shear bond strength between various commercial all-ceramic system core and veneering ceramics, and evaluate the clinical stability by comparing the conventional metal ceramic system. The test samples were divided into three groups: Ni-Cr alloy (metal bond), yttria-stabilized, tetragonal zirconia polycrystal (Y-TZP) (zirconia bond), lithium disilicate (lithium disilicate bond). The veneering porcelain recommended by the manufacturer for each type of material was fired to the core. After firing, the specimens were subjected to shear force in a universal testing machine. Load was applied at a crosshead speed of 0.50 mm/min until failure. Average shear strengths (mega pascal) were analyzed with a one-way analysis of variance and the Tukey test (${\alpha}$=0.05). The mean shear bond strength${\pm}$SD in MPa was $44.79{\pm}2.31$ in the Ni-Cr alloy group, $28.32{\pm}4.41$ in the Y-TZP group, $15.91{\pm}1.39$ in the Lithium disilicate group. The ANOVA showed a significant difference among groups (p<0.05). None of the all-ceramic system core and veneering ceramics could attain the high bond strength values of the metal ceramic combination.

Effect of Metal Chloride Coloring Liquids on Color and Strength Changes of Tetragonal Zirconia Polycrystals (금속염화물 착색제 침투가 정방정 지르코니아 다결정체의 색조와 강도 변화에 미치는 영향)

  • Oh, Jong-Jin;Noh, Hyeong-Rok
    • Journal of dental hygiene science
    • /
    • v.15 no.5
    • /
    • pp.577-584
    • /
    • 2015
  • The purpose of this study was to evaluate the effect of metal chloride infiltration treatment on color and strength changes of the yttria-stabilized tetragonal zirconia polycrystals (Y-TZP). Fifty disc specimens were prepared with a Y-TZP powder (ZPEX; Tosoh, Japan). Thirty different metal chloride solutions containing 0.03~0.08 wt% chromium and 0.03~0.07 wt% terbium ions were prepared. Presintered Y-TZP specimens were soaked in metal chloride coloring liquids for 3 minutes and sintered in air at $1,450^{\circ}C$ for 2 hours. The color of the specimens was measured with spectrophotometer and color difference (${\Delta}E^*$) was obtained based on the CIE $L^*$, $a^*$, $b^*$ color coordinate values. To evaluate the effect of metal chloride infiltration strength changes, the biaxial flexural test was performed at crosshead speed 0.5 mm/min. Colors of the sintered Y-TZP showed the colors of Vita shade guide A1, A2 and A3 with the infiltration of chromium and terbium chloride solutions. Density of the sintered Y-TZP increased by the infiltration of chromium and terbium chloride solutions. Bi-axial flexural strength of the sintered Y-TZP did not show statistically significant differences by the infiltration of chromium and terbium chloride solutions (p>0.05). Chromium and terbium chloride did not affect the crystal phase of zirconia, and all specimens showed tetragonal phase. Accordingly, this study suggests that chromium and terbium chlorides can make colored zirconia while adding in a liquid form. The color of colored zirconia differ from that of vita shade guide but it can use all ceramic restoration as substructure in dental clinic.

Evaluation of shear bond strength between dual cure resin cement and zirconia ceramic after thermocycling treatment

  • Lee, Jung-Jin;Kang, Cheol-Kyun;Oh, Ju-Won;Seo, Jae-Min;Park, Ju-Mi
    • The Journal of Advanced Prosthodontics
    • /
    • v.7 no.1
    • /
    • pp.1-7
    • /
    • 2015
  • PURPOSE. This study was performed to evaluate shear bond strength (SBS) between three dual-cured resin cements and silica coated zirconia, before and after thermocycling treatment. MATERIALS AND METHODS. Sixty specimens were cut in $15{\times}2.75mm$ discs using zirconia. After air blasting of $50{\mu}m$ alumina, samples were prepared by tribochemical silica coating with $Rocatec^{TM}$ plus. The specimens were divided into three groups according to the dual-cure resin cement used: (1) Calibra silane+$Calibra^{(R)}$, (2) Monobond S+$Multilink^{(R)}$ N and (3) ESPN sil+$RelyX^{TM}$ Unicem Clicker. After the resin cement was bonded to the zirconia using a Teflon mold, photopolymerization was carried out. Only 10 specimens in each group were thermocycled 6,000 times. Depending on thermocycling treatment, each group was divided into two subgroups (n=10) and SBS was measured by applying force at the speed of 1 mm/min using a universal testing machine. To find out the differences in SBS according to the types of cements and thermocycling using the SPSS, two-way ANOVA was conducted and post-hoc analysis was performed by Turkey's test. RESULTS. In non-thermal aged groups, SBS of Multilink group (M1) was higher than that of Calibra (C1) and Unicem (U1) group (P<.05). Moreover, even after thermocycling treatment, SBS of Multilink group (M2) was higher than the other groups (C2 and U2). All three cements showed lower SBS after the thermocycling than before the treatments. But Multilink and Unicem had a significant difference (P<.05). CONCLUSION. In this experiment, Multilink showed the highest SBS before and after thermocycling. Also, bond strengths of all three cements decreased after thermocycling.

Effect of modeling liquid on the shear-bond strength of zirconia core - porcelain veneer (도재 전용액이 지르코니아 코어-도재 비니어의 전단결합강도에 미치는 영향)

  • Choi, Byung-Hwan;Kim, Im-Sun
    • Journal of Technologic Dentistry
    • /
    • v.36 no.2
    • /
    • pp.83-89
    • /
    • 2014
  • Purpose: This study is to evaluate the effect of modeling liquid on the shear-bond strength between zirconia core and veneering ceramic. Methods: Disk-shaped (diameter: 12.0mm; height: 3.0mm) zirconia were randomly divided into six groups according to the surface conditioning method and whether modeling liquid is used or not to be applied (N=60, n=10 per group): group 1-control group with distilled water(ZD); group 2-control group with modeling liquid(ZM); group 3-airborne particle abrasion with $110-{\mu}m$ $Al_2O_3$(AD) with distilled water; group 4-airborne particle abrasion with $110-{\mu}m$ $Al_2O_3$ with modeling liquid(AM); group 5-liner with distilled water(LD); group $6{\pounds}{\neq}liner$ with modeling liquid(LM). Contact angles were determined by the sessile drop method at room temperature using a contact angle measurement apparatus. The specimens were prepared using dentin veneering ceramics, veneered, 3mm high and 2.8mm in diameter, over the cores. The shear bond strength test was performed in a Shear bond test machine. Load was applied at a cross-head speed of 0.50mm/min until failure. The fractured zirconia surfaces were evaluated by using stereomicroscope (${\times}30$). Collected data were analyzed using SPSS(Statistical Package for Social Sciences) Win 12.0 statistics program. Results: ZD showed the highest contact angle($50.6{\pm}5.4^{\circ}$) and LD showed the lowest value($6.7{\pm}1.3^{\circ}$). Control groups and zirconia liner groups were significantly higher contact angle than liner groups(p<0.05). LD was the highest shear bond strength($43.9{\pm}3.8MPa$) and ZD was the lowest shear bond strength($24.8{\pm}4.9MPa$). Shear bond strengths of control groups and contact angle of liner groups were not significantly different((p>0.05). Liner groups presented adhesive failures. The others groups showed cohesive and adhesive failures. Conclusion: Modeling liquid groups showed lower contact angles and lower shear bond strength compared to those of distilled water groups.