• Title/Summary/Keyword: Zircon U-Pb age

Search Result 73, Processing Time 0.017 seconds

LA-MC-ICPMS U-Pb Ages of the Detrital Zircons from the Baengnyeong Group: Implications of the Dominance of the Mesoproterozoic Zircons (신원생대 백령층군 사암의 쇄설성 저어콘 LA-MC-ICPMS U-Pb 연령: 중원생대 집중연령의 의미)

  • Kim, Myoung Jung;Park, Jeong-Woong;Lee, Tae-Ho;Song, Yong-Sun;Park, Kye-Hun
    • Economic and Environmental Geology
    • /
    • v.49 no.6
    • /
    • pp.433-444
    • /
    • 2016
  • The U-Pb ages of detrital zircons from the Baengnyeong Group were determined by LA-MC-ICPMS, yielding condensed age population in the range from 1100 Ma to 1800 Ma corresponding to the Mesoproterozoic to late Paleoproterozoic. However, detrital zircons of ca.1800-2000 Ma or ca. 2500 Ma ages, which appear frequently in the lower Paleozoic Joseon Supergroup and the upper Paleozoic Pyeongan Supergroup are lacking in the Baengnyeong Group. Such characteristics are identical to those of the Neoproterozoic Sangwon System of North Korea, suggesting that the Baengnyeong Group might be the southwestern extension of the Sangwon System. The zircon age distribution patterns from the Impi Formation in the Gunsan area closely resemble those of the Baengnyeong Group, implying possible correlation of the Impi Formation to the Sangwon System. Therefore, the Mesoproterozoic detrital zircons reported from the Hwangangni Formation of the Okcheon Metamorphic Belt and the Myobong, Sambangsan and Sesong Formations of the Taebaeksan Basin might be derived from the provenances within the Korean peninsula.

SHRIMP U-Pb Zircon Ages of the Gusandong (Kusandong) Tuff in the Cretaceous Gyeongsang Basin (백악기 경상분지 구산동응회암의 SHRIMP 저콘 연대)

  • Kim, Jong-Sun;Cho, Hyeongseong;Kim, Hong-Gyun;Son, Moon
    • The Journal of the Petrological Society of Korea
    • /
    • v.22 no.3
    • /
    • pp.235-249
    • /
    • 2013
  • The Gusandong Tuff (Kusandong Tuff), known as a very significant key bed in the Cretaceous Gyeongsang Basin, is divided into (1) Northern Gusandong Tuff (NKT), (2) Southern Gusandong Tuff (SKT), and (3) Sinsudo Tuff, which were derived from different vents. In order to suggest their more accurate eruption times and to contribute to establishing stratigraphy of the basin, SHRIMP U-Pb zircon ages were determined from the three tuffs. As a result, the virtually same ages of $103.0{\pm}1.2$ Ma and $104.1{\pm}1.3$ Ma were obtained from NKT and SKT, respectively, which mean that they simultaneously erupted during 103~104 Ma. The zircon ages obtained from the Sinsudo Tuff are however divided into two groups i.e. $103.4{\pm}2.1$ and $95.79{\pm}0.98$ Ma. Based on distinctive morphology and cathodoluminescence image of the younger zircons, the younger age, $95.79{\pm}0.98$ Ma, is much more reasonable as the eruption time of the Sinsudo Tuff.

Relative Magma Formation Temperatures of the Phanerozoic Granitoids in South Korea Estimated by Zircon Saturated Temperature (저콘 포화온도로 추정한 남한 현생이언 화강암의 상대적인 마그마 생성온도)

  • Sangong Hee;Kwon Sung-Tack;Cho Deung-Ryong;Jwa Yong-Joo
    • The Journal of the Petrological Society of Korea
    • /
    • v.14 no.2 s.40
    • /
    • pp.83-92
    • /
    • 2005
  • It has recently been proposed that granites can be divided into hot and cold ones by absence and presence of inherited zircon, respectively, which is closely related to zircon saturation temperature. The Phanerozoic granites in South Korea are divided into high- and low-Zr groups in a $SiO_2-Zr$ diagram, which appears to be related to their intrusive age. Most Triassic-Jurassic granites belong to low-Zr group, whereas most Cretaceous-Early Tertiary granites belong to the high-Zr group with the exception of geographically distinct Masan and Jinhae granites that belong low-Zr group. Calculated zircon saturation temperatures using major elements and Zr contents indicate that the Cretaceous-Early Tertiary granites $(608-834^{\circ}C,\;average\; 782\pm31^{\circ}C)$ except for the Masan and Jinhae granites $(average\;759\pm16^{\circ}C)$ show higher temperature than the Triassic-Jurassic granites $(642-824^{\circ}C,\;average\;756\pm31^{\circ}C)$. U-Pb zircon isotope data of the Triassic-Jurassic granites reported so far define discordia in a concordia diagram, which indicates presence of inherited zircon and agrees with their low zircon saturation temperatures. So the Triassic-Jurassic granites appear to belong to cold granite. On the other hand, presence or absence of inherited zircon has not been known for the Cretaceous-Early Tertiary granites with relatively high zircon saturation temperature, so that their classification into hot or cold granite awaits further study. Nevertheless, the Creatceous-Early Tertiary granites may have formed at higher temperature than the Triassic-Jurassic granites, since zircon saturation temperature reflects formation temperature of magma to a certain degree.

Bird Tracks from the Cretaceous Sanbukdong Formation, Gunsan City, Jeollabuk-do, Korea (전라북도 군산시 산북동층에서 발견된 백악기 새 발자국 화석)

  • Dong-Gwon Jeong;Cheong-Bin Kim;Kyu-Seong Cho;Kyung Soo Kim
    • Journal of the Korean earth science society
    • /
    • v.44 no.1
    • /
    • pp.36-46
    • /
    • 2023
  • In this study, small bird tracks from the Cretaceous Sanbukdong Formation in Gunsan City, South Korea, were briefly described. Detrital zircon SHRIMP U-Pb dating was conducted of the tuffaceous sandstone from the formation to determine the depositional age of the vertebrate track-bearing strata. Small bird tracks are not well-preserved but divided into two types: two consecutive tracks and three isolated tracks. They are small, asymmetric, slender, functionally-tridactyl tracks, which lack a web between digits. The consecutive and isolated tracks were identified as Koreanaornis dodsoni? and Koreanaornis ichnosp., respectively. This study adds avian tracks to the Sanbukdong tetrapod track assemblage composed of theropods, ornithopods, and pterosaur tracks. According to the U-Pb dating, the estimated age of the Sanbukdong Formation is 112.5±5.8 Ma, regard as the Aptian Stage, representing the maximum depositional age for the Sanbukdong Formation. The Sanbukdong Formation can be correlated with the lower part of the Jinju Formation in the Gyeongsang Basin. Thus, small avian tracks may represent the oldest Korean occurrence of Koreanaornis.

Gwangju Shear Zone : Is it the Tectonic Boundary between the Yeongnam Massif and Okcheon Metamorphic Belt? (광주전단대 : 영남육괴와 옥천변성대의 지구조적 경계?)

  • Ha, Yeongji;Song, Yong-Sun;Kim, Jeong-Min
    • The Journal of the Petrological Society of Korea
    • /
    • v.23 no.1
    • /
    • pp.17-30
    • /
    • 2014
  • In this study we carried out SHRIMP U-Pb age dating of detrital zircons from age-unknown meta-sedimentary formations distributed around the NNE-SSW trending Gwangju Shear Zone, a branch of Honam Shear Zone, in the southwestern region of the Korean Peninsula. The meta-sedimentary formations from the west (Yeonggwang) and east (Jangseong) areas of the Gwangju Shear Zone have different patterns of zircon age distributions. Zircons of quartzites from the Yeonggwang area yield clusters at Neoarchean (ca. 2,500 Ma), Paleoproterozoic (ca. 1,860 Ma), Neoproterozoic (ca. 960 Ma) and Paleozoic (ca. 380 Ma) ages, but those of the Jangseong area yield clusters at only Neoarchean (ca. 2,500Ma) and Paleoproterozoic (ca. 1,880 Ma) ages. The contrastive patterns in age indicate that the meta-sedimentary formations from the west and east areas correspond to the meta-sedimentary formations of the Okcheon Metamorphic Belt and the sedimentary formations overlying on the Yeongnam Massif, respectively. The results imply that the Gwangju Shear Zone is the tectonic boundary between the Okcheon Metamorphic Belt and the Yeongnam Massif.

A Review on the Stratigraphy, Depositional Age, and Composition of the Chungnam Basin Fills (충남분지 충전물의 층서, 퇴적시기, 조성에 관한 고찰)

  • Lee, Hyojong;Park, Seung-Ik;Choi, Taejin
    • Economic and Environmental Geology
    • /
    • v.52 no.5
    • /
    • pp.357-366
    • /
    • 2019
  • Deposition of the Daedong Supergroup has been considered to be related with the Triassic Songrim and Jurassic Daebo orogenies. The Chungnam Basin fills is an important sedimentary succession to understand the geological evolution of the Early to Middle Mesozoic Korean Peninsula. Previous paleontological and paleomagnetic studies have suggested the Late Triassic to Early Jurassic sedimentation of the Chungnam Basin fills. However, the orogenic model of the basin development has remained controversial because recently reported zircon U-Pb isotopic ages are not harmonious with the previous studies. This paper aims to review the stratigraphy, depositional age, and composition of the Chungnam Basin fills, together with test of the basin development models.

Geochronological and Geotectonic Implications of the Serpentinite Bodies in the Hongseong Area, Central-western Korean Peninsula (한반도 중서부 홍성지역 내에 분포하는 사문암체의 지질연대학 및 지구조적 의미)

  • Kim, Sung Won;Park, Seung-Ik
    • Economic and Environmental Geology
    • /
    • v.49 no.4
    • /
    • pp.249-267
    • /
    • 2016
  • The Hongseong area of the central-western Korean Peninsula is considered to be a part of collision zone that is tectonically correlated to the Qinling-Dabie-Sulu belt of China. The area includes the elliptical-shaped serpentinized ultramafic bodies, together with mafic rocks. The studied bodies are in contact with the surrounded Neoproterozoic alkali granites at the Baekdong and Wonnojeon bodies and the Paleoproterozoic Yugu gneiss at the Bibong body. The Baekdong body contains the blocks of the Neoproterozoic alkali granites and the Late Paleozoic metabasites. The Bibong body also includes the Neoproterozoic alkali granite blocks. The Mesozoic intrusive rocks are also recognized at the Baekdong, Wonnojeon and Bibong bodies. On the other hand, the Early Cretaceous volcanic rocks are occurred at the Bibong body. The detrital zircon SHRIMP U-Pb ages of the serpentinites at three bodies range variously from Neoarchean to Middle Paleozoic at the Baekdong body, and from Neoarchean to Early Cretaceous at the Wonnojeon and Bibong bodies. Although serpentinization does not generally produce minerals suitable for direct isotopic dating, the youngest Middle Paleozoic age at the Baekdong body and the Early Cretaceous age at the Wonnojeon and Bibong bodies indicate the possible upper age limit for the (re)serpentinization. Especially, the Early Cretaceous serpentinization ages may be related to the widespread Early Cretaceous igneous activity in the central-southern Korean Peninsula. Age results for the serpentinite bodies and the included blocks of the studied serpentinized ultramafic bodies in the Hongseong area, therefore, provide several possible interpretations for the serpentinization ages of the ultramafic rocks as well as the geotectonic implications of serpentinization, requiring more detailed study including other serpentinized ultramafic bodies in the Hongseong area.

Distribution and Stratigraphical Significance of the Haengmae Formation in Pyeongchang and Jeongseon areas, South Korea (평창-정선 일대 "행매층"의 분포와 층서적 의의)

  • Kim, Namsoo;Choi, Sung-Ja;Song, Yungoo;Park, Chaewon;Chwae, Ueechan;Yi, Keewook
    • Economic and Environmental Geology
    • /
    • v.53 no.4
    • /
    • pp.383-395
    • /
    • 2020
  • The stratigraphical position of the Haengmae Formation can provide clues towards solving the hot issue on the Silurian formation, also known as Hoedongri Formation. Since the 2010s, there have been several reports denying the Haengmae Formation as a lithostratigraphic unit. This study aimed to clarify the lithostratigraphic and chronostratigraphic significance of the Haengmae Formation. The distribution and structural geometry of the Haengmae Formation were studied through geologic mapping, and the correlation of relative geologic age and the absolute age was performed through conodont biostratigraphy and zircon U-Pb dating respectively. The representative rock of the Haengmae Formation is massive and yellow-yellowish brown pebble-bearing carbonate rocks with a granular texture similar to sandstone. Its surface is rough with a considerable amount of pores. By studying the mineral composition, contents, and microstructure of the rocks, they have been classified as pebble-bearing clastic rocks composed of dolomite pebbles and matrix. They chiefly comprise of euhedral or subhedral dolomite, and rounded, well-sorted fine-grained quartz, which are continuously distributed in the study area from Biryong-dong to Pyeongan-ri. Bedding attitude and the thickness of the Haengmae Formation are similar to that of the Hoedongri Formation in the north-eastern area (Biryong-dong to Haengmae-dong). The dip-direction attitudes were maintained 340°/15° from Biryong-dong to Haengmae-dong with a thickness of ca. 200 m. However, around the southwest of the studied area, the attitude is suddenly changed and the stratigraphic sequence is in disorder because of fold and thrust. Consequently, the formation is exposed to a wide low-relief area of 1.5 km × 2.5 km. Zircon U-Pb age dating results ranged from 470 to 449 Ma, which indicates that the Haengmae Formation formed during the Upper Ordovician or later. The pebble-bearing carbonate rock consisted of clastic sediments, suggesting that the Middle Ordovician conodonts from the Haengmae Formation must be reworked. Therefore, the above-stated evidence supports that the geologic age of the Haengmae Formation should be Upper Ordovician or later. This study revealed that the Haengmae Formation is neither shear zone, nor an upper part of the Jeongseon Limestone, and is also not the same age as the Jeongseon Limestone. Furthermore, it was confirmed that the Haengmae Formation should be considered a unit of lithostratigraphy in accordance with the stratigraphic guide of the International Commission on Stratigraphy (ICS).

$^{40}Ar-^{39}39/Ar$ Biotite and Plagioclase Ages of the Gneeisses from Gyeonggi Massif (경기육괴 편마암의 흑운모와 사장석 $^{40}Ar-^{39}39/Ar$ 연대)

  • 박계헌;송용선
    • The Journal of the Petrological Society of Korea
    • /
    • v.13 no.3
    • /
    • pp.152-160
    • /
    • 2004
  • $^{40}Ar-^{39}39/Ar$ ages were determined from the biotites and plagioclases separated from the Precambrian gneisses of Gyeonggi Massif. Biotites yield $1,294{\pm}46,\;1,241{\pm}39\;and\;1,217{\pm}39Ma(2{\sigma}\;errors)$, and plagioclases yield $934{\pm}25,\;872{\pm}19,\;819{\pm}15(2{\sigma})Ma$. These ages are significantly different from the U-Pb zircon ages obtained from the identical samples ($1,613{\pm}51~2,168{\pm}24Ma(2{\sigma})$, Song et al., 2001). The ages of biotites and plagioclases can be interpreted to represent independent regional thermal events. The Mesoproterozoic ages recorded by the biotites can be interpreted as a consequence of regional metamorphism followed by differential uplift. We propose that plagioclases record Neoproterozoic ages which are related with igneous activities under the regional extensional regime, related with the breakup of the supercontinent Rodinia existed at that time.

Petrological, Geochemical and Geochronological Studies of Precambrian Basement in Notheast Asia Region: 1. Age of the Metamorphism of Jirisan Area (동북아시아지역 선캠브리아 지괴에 대한 암석학, 지구화학 및 지구연대학적 연구 : 1. 지리산 지역 변성암의 변성연대)

  • 박계현;송용선;박맹언;이승구;류호정
    • The Journal of the Petrological Society of Korea
    • /
    • v.9 no.1
    • /
    • pp.29-39
    • /
    • 2000
  • For the determination of metamorphic age of the metamorphic rocks distributed in the Ji-san area of Youngnam massif, Sm and Nd isotopic compositions were analyzed for the whole rock and garnet separates. As the result, we obtained 1799 + 11 Ma from the porphyroblastic gneiss, 1776 +30 Ma from the metapelite, 1714+35 Ma from the mafic granulite xenolith within the porphyroblastic gneiss, and 1776+30 Ma from the metapelite occurred as a xenolith within the quartzofeldspathic gneiss. There have been reports of geologic ages similar to such metamorphic ages of Jirisan area from the other portion of the Youngnam massif, which reveals that very intense metamorphism took place over the vast area of Youngnam massif during the period of 1.7-1.8 Ga ago. The granulite facies metomorphism of the Gyeonggi massif also shows the age similar to this period. Such resemblance in their metamorphic ages suggests that these massifs experienced similar tectonothermal events occurred at about the same Precambrian periods, which implies the possibility that the extension of the collision belt between the north and south China blocks does not extend through some places between the Youngnam and Gyeonggi massifs. On the other hand a quarzofeldspathic xenolith of porphyroblastic gneiss show 1928 +42 Ma which is older than above age of the metamorphism and is identical with the zircon U-Pb age of porphyroblastic gneiss indicating the formation age of the protolith of the porphyroblastic gneiss.

  • PDF