• 제목/요약/키워드: Zircaloy-4 tube wear

검색결과 16건 처리시간 0.024초

TiN코팅한 지르칼로이-4튜브의 프레팅 특성 (Fretting Characteristics of TiN Coated Zircaloy-4 Tube)

  • 성지현;김태형;김석삼
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2000년도 제31회 춘계학술대회
    • /
    • pp.269-275
    • /
    • 2000
  • The fretting wear characteristics of TiN coated Zircaloy-4 tube were investigated experimentally The fretting wear experiment was performed using TiN coated Zircaloy-4 tube as the fuel rod cladding material and uncoated Zircaloy-4 tube as one of grids. TiN coating is probably one of the most frequently and successfully used PVD coatings for the mitigation of fretting wear. In this study, TiN coating by PVD was employed for improvement of Zircaloy-4 tube fretting characteristics. The fretting tester was designed and manufactured for this experiment. TiN coated Zircaloy-4 tube was used as the moving specimen, uncoated ZircaBoy-4 tube as the stationary one. The number of cycles, slip amplitude and normal load were selected as main factors of fretting wear. The results of this research showed that the wear volume of TiN coated Zircaloy-4 tube increased as number of cycles, normal load and slip amplitude increase but the quantity of volume was lower than the case of uncoated Zircaloy-4 tube pairs.

  • PDF

경수 및 공기중에서의 지르칼로이-4 튜브의 프레팅 마멸특성 비교 (A Comparison of Fretting Wear Characteristics of Zircaloy-4 Tube in Light Water and in Air)

  • 조광희;김태형;김석삼
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 1999년도 제29회 춘계학술대회
    • /
    • pp.303-309
    • /
    • 1999
  • The fretting wear behaviour of Zircaloy-4 tube used as the fuel rod cladding in PWR nuclear power plants has been investigated at the different test environment, in light water and in air as a function of slip amplitude, normal load, test duration and frequency. Zircaloy-4 tubes were used for both of oscillating and stationary specimens. A fretting wear tester was designed to be suitable for this fretting test. The wear volume and specific wear rate of Zircaloy-4 tube in water were greater than those in air under various slip amplitude. It was found that delaminate debris and surface cracks were observed at low slip amplitude and high load in water Experimental results showed that the light water accelerated the wear of Zircaloy-4 tube at low slip amplitude in fretting.

  • PDF

지르칼로이-4 튜브 프레팅 마멸 특성의 환경 의존성과 마멸기구 (Comparison of Fretting Wear Characteristics of Zircaloy-4 Tube in Light Water and in Air)

  • 조광희;김석삼
    • Tribology and Lubricants
    • /
    • 제15권1호
    • /
    • pp.83-89
    • /
    • 1999
  • The fretting wear behaviour of Zircaloy-4 tube used as the fuel rod cladding in PWR nuclear power plants has been investigated at the different test environment, in light water and in air as a function of slip amplitude, normal load, test duration and frequency. Zircaloy-4 tubes were used for both of oscillating and stationary specimens. A fretting wear tester was designed to be suitable for this fretting test. The wear volume and specific wear rate of Zircaloy-4 tube in water was greater than those in air under various slip amplitude. Delaminates and surface cracks were observed at low slip amplitude and high load of fretting test in water, but the traces of adhesion and plowing were observed at and above 200 Um. The water accelerates the wear of Zircaloy-4 tube at lower slip amplitude in fretting.

공기중에서 인코넬-지르칼로이 접촉의 프레팅 마멸특성 (Fretting Wear Characteristics of Inconel-Zircaloy Contact in Air)

  • 노규철;김석삼
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 1999년도 제29회 춘계학술대회
    • /
    • pp.310-316
    • /
    • 1999
  • The fretting wear characteristics of the contact between Zircaloy-4 tube and Inconel 600 tube have investigated. Zircaloy-4 is used for fuel rod in nuclear reactor and Inconel 600 is used for tube In steam generator of nuclear power plant. A fretting wear tester was designed to be suitable for this fretting test. In this study, the number of cycles, slip amplitude and normal load were selected as main factors of fretting wear. This study shows that the wear scar length of Zircaloy-4 and Inconel 600 increases as number of cycles, normal load and slip amplitude increase and the wear scar length of Zircaloy-4 is more longer than that of Inconel 600 due to the surface hardness.

  • PDF

경수중에서 지르칼로이-4 튜브의 프레팅 마멸특성 (Fretting Wear Characteristics of Zircaloy-4 Tube in Light Water)

  • 조광희;노규철;김석삼;조성재
    • Tribology and Lubricants
    • /
    • 제14권4호
    • /
    • pp.88-94
    • /
    • 1998
  • The fretting wear characteristics of Zircaloy-4 tube in light water were investigated experimentally. A fretting wear tester was designed to be suitable for this fretting test. This study was focused on the effects due to the combination of normal load, slip amplitude and number of cycles as the main factors of fretting. The results of this study showed that the wear volume increased abruptly at slip amplitude above 100 ${\mu}{\textrm}{m}$, which is defined as critical slip amplitude of Zircaloy-4 tube in light water, and that under 160 ${\mu}{\textrm}{m}$ the wear volume decreased as load increased at the same slip amplitude.

경수중에서 지르칼로이-4 튜브의 프레팅 마멸특성 (Fretting Wear Characteristics of Zircaloy-4 Tube in Light Water)

  • 조광희;노규철;김석삼;조성재
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 1998년도 제27회 춘계학술대회
    • /
    • pp.55-63
    • /
    • 1998
  • The fretting wear characteristics of Zircaloy-4 tube in light water were investigated experimentally. A fretting wear tester was designed to be suitable for this fretting test. This study was focused on the effects due to the combination of normal load, slip amplitude and number of cycles as the main factors of fretting. The results of this study showed that the wear volume increased abruptly at slip amplitude above 100$\mu$m, which is defined as critical slip amplitude of Zircaloy-4 tube in light water, and that under 160$\mu$m the wear volume decreased as load increased at the same slip amplitude.

  • PDF

TiAIN 코팅한 핵연료봉 피복재의 프레팅 마멸 평가 (Fretting Wear Evaluation of TiAIN Coated Nuclear Fuel Rod Cladding Materials)

  • 김태형;김석삼
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2002년도 제35회 춘계학술대회
    • /
    • pp.88-95
    • /
    • 2002
  • Fretting of fuel rod cladding material, Zircaloy-4 Tube, in PWR nuclear power plants must be reduced and avoided. Nowadays the introduction of surface treatments or coatings is expected to bean ideal solution to fretting damage since fretting is closely related to wear, corrosion and fatigue. Therefore, in this study the fretting wear experiment was peformed using TiAIN coated Zircaloy-4 tube as the fuel rod cladding and uncoated Zircaioy-4 tube as one of grids, especially concentrating on the sliding component. Fretting wear resistance of TiAIN coated Zircaloy-4 tubes was improved compared with that of TiN coated tubes and uncoated tubes and the fretting wear mechanisms were delamination and plastic flow following by brittle fracture at lower slip amplitude but severe oxidation and spallation of oxidative layer at higher slip amplitude.

  • PDF

수중 및 공기 중에서의 지르칼로이-4 튜브마멸 비교분석 (Comparison and Analysis of Zircaloy-4 Tube Wear in Air and Water Environment)

  • 김형규;박순종;강흥석;윤경호;송기남
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2001년도 제34회 추계학술대회 개최
    • /
    • pp.19-26
    • /
    • 2001
  • The wear characteristic of Zircaloy-4 tube, which is used for a cladding of light water reactor fuel rod, is investigated experimentally. The experiment is conducted with contacting the crossed tube specimens in air as well as in water at room temperature with various combination of contact normal force and sliding distance of reciprocating motion. The contour and the volume of each wear are examined to study the effect of contact condition and environment on wear. As a result, it is found that the wear volume in the water environment is larger than that in the air for all the contact (i.e., force and sliding distance) conditions. However, the wear depth is greater in air than in water if the contact normal force and the sliding distance are larger. These are explained by the ease of detachment of wear particles from the contact surface. On the other hand, workrate model is applied with the contact shear force range measured by our wear tester. Investigated is the correlation between the workrate and the wear volume increase rate of the present experiment. The parabolic curve is found to fit well for the present wear data.

  • PDF

EXPERIMENTAL INVESTIGATION OF FRETTING BEHAVIOR OF TiAlN COATED NUCLEAR FUEL ROD CLADDING MATERIALS

  • Kim, T.H.;Kim, S.S.
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2002년도 proceedings of the second asia international conference on tribology
    • /
    • pp.185-186
    • /
    • 2002
  • Fretting of fuel rod cladding material, Zircaloy-4 tube, in PWR nuclear power plants must be reduced and avoided. Nowadays the introduction of surface treatments or coatings is expected to be an ideal solution to fretting damage since fretting is closely related to wear. corrosion and fatigue. Therefore. in this study the fretting wear experiment was performed using TiAlN coated Zircaloy-4 tube as the fuel rod cladding and uncoated Zircaloy-4 as on of grids, especially concentrating on the sliding component. Fretting wear resistance of TiAlN coated Zircaloy-4 tubes was improved compared with that of TiN coated tubes and uncoated tubes and fretting wear mechanisms were brittle fracture and plastic flow at lower slip amplitude but severe oxidation and spallation of oxidative layer at higher ship amplitude.

  • PDF

지르코늄 합금 튜브의 산화와 프레팅 마멸 특성 (Oxidation and Fretting Wear Characteristics of Zirconium Alloy Tubes)

  • 정일섭;이호성;이명호
    • Tribology and Lubricants
    • /
    • 제25권4호
    • /
    • pp.250-255
    • /
    • 2009
  • Oxidation characteristics of Zirlo and Zircaloy-4 tubes, which are widely used as nuclear power fuel cladding, are studied in steam environment up to $1200^{\circ}C$. Oxidation resistances are compared in terms of the mass increase due to the absorption of oxygen. The evolution of microscopic structure accompanied with the oxidation process is investigated. Also, the influence of oxidation on the fretting wear characteristics of the tubes is studied. Piezo-electrically actuated rig is employed to fret the tubes with cross-contacting arrangement. Wear scar is observed and measured, by using microscopes and a 3D-profiler. The results of fretting wear are quantified in terms of scar size, wear volume and wear coefficient, and compared for the three different tube materials of oxidated Zirlo, virgin Zirlo and Zircaloy-4.