• Title/Summary/Keyword: Zinc-Aluminum

Search Result 234, Processing Time 0.029 seconds

Sol-gel법 및 Direct Patterning을 통해 Moth-eye 구조가 패터닝된 AZO 박막의 제작

  • Kim, Jin-Seung;Byeon, Gyeong-Jae;Park, Hyeong-Won;Jo, Jung-Yeon;Lee, -Heon
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.62.1-62.1
    • /
    • 2011
  • 현재 상용화된 LED 또는 태양전지 등의 투명전극(TCO, transparent couducting oxide)재료로 높은 전기전도도와 광투과도를 갖는 ITO (Indium Tin Oxide)가 많이 채택되고 있다. 그러나 이에 사용되는 Indium의 단가가 높다는 문제점이 있어 이를 대체하기 위한 물질의 연구가 많이 이루어지고 있다. 특히 Aluminum을 doping한 ZnO (AZO)는 우수한 전기적, 광학적 특성 등으로 인해 ITO를 대체할 차세대 TCO 물질로 각광받고 있다. 본 연구에서는 sol-gel법을 및 direct patterning법을 이용하여 moth-eye 패턴을 포함하는 AZO 박막을 제작하였다. AZO sol을 제작하기 위하여 2-methoxyethanol, zinc acetate dihydrate 및 doping source로 aluminum nitrate nonahydrate를 사용하였다. 또한 광추출 향상 효과를 갖는 moth-eye 구조의 master stamp를 Polydimethyl siloxane(PDMS)를 이용하여 역상 moth-eye 구조의 mold를 복제하였으며, 이 복제된 mold와 제작된 AZO sol을 이용한 direct patterning법을 통해 나노급 moth-eye 구조를 갖는 AZO 투명전극층을 형성하였다. 제작된 moth-eye 구조를 갖는 AZO 투명전극층의 전기적 특성 평가를 위해, 4-point probe 측정 및 Hall measurement를 시행하였으며, 광학적 특성을 확인하기 위하여 UV-Visable spectrometer를 이용하여 투과도를 측정하였다. 본 연구를 통해 현재 상용화된 광전자 소자에 사용되고 있는 ITO 투명전극을 대체할 차세대 투명전극으로써 AZO 박막의 가능성을 확인하였다.

  • PDF

Study on the Friction Characteristics of Various Panels in Circular Drawbead Forming of Cold Rolled Steels for Automotive Parts (자동차용 냉간압연재의 원형 드로우비드 성형시 강판 재질별 마찰특성에 관한 연구)

  • Kim D. H.;Lee D. H.;Kim W. T.;Moon Y H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.08a
    • /
    • pp.83-90
    • /
    • 2004
  • The drawbead is one of the most important factors in sheet metal forming for automotive parts. So clarifying the friction characteristics between sheets and drawbead is essential to improve the formability of sheet metal. Therefore in this study, drawbead friction test was performed at various panels(cold rolled steel sheets, galvanized steel sheets, electrogalvanized coating steel sheets, electrogalvanized Zn-Fe alloy steel sheets and aluminum alloy steel sheets). Circular shape bead has been used for the test. The results show that friction and drawing characteristics were mainly influenced by the nature of zinc coating.

  • PDF

Experimental Evaluation of Weathering Performance for Duplex Coating Systems Combining Thermal Spraying Metals and Painting (금속용사와 도장의 복합피복방식법에 대한 실험적 내후성능평가)

  • Kim, In Tae;Jun, Je Hyong;Cha, Ki Hyuk;Jeong, Young Soo;Ahn, Jin Hee
    • Journal of Korean Society of Steel Construction
    • /
    • v.28 no.5
    • /
    • pp.373-382
    • /
    • 2016
  • Painting or thermally sprayed metal coating is often used in corrosion protection of steel structures. In recently, duplex coating system which combines thermally sprayed metals with paint is selected as a new generic type of coatings on steel structures under the highly corrosive environments. In this study, the structural steel specimens were surface treated, thermally sprayed with zinc, zinc-15%aluminum alloy, aluminum and aluminum-5%magnesium alloy, and finally sealing or painted with acrylic urethane. And as a reference specimens, steel specimens were painted with acrylic urethane after surface treatment. Circular defects with 1.0, 3.0 and 5.0 mm in diameters and line defect with 2.0 mm width, which reach the steel substrate were created on all specimens. The specimens were exposed into an environmental testing chamber controlled by the ISO 20340, which is a laboratory cyclic accelerated exposure test condition of spraying/UV/low temperature, for up to 175 days. Based on the corrosion tests, corrosion deterioration from the initial defects were evaluated and weathering performance of the specimens are compared.

Change in the Energy Band Gap and Transmittance IGZO, ZnO, AZO OMO Structure According to Ag Thickness (IGZO, ZnO, AZO OMO 구조의 Ag두께 변화에 따른 투과율과 에너지 밴드 갭의 변화)

  • Lee, Seung-Min;Kim, Hong-Bae;Lee, Sang-Yeol
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.3
    • /
    • pp.185-190
    • /
    • 2015
  • In this study, we fabricated the indium gallium zinc oxide (IGZO), zinc oxide (ZnO), aluminum zinc oxide (AZO). oxide and silver are deposited by magnetron sputtering and thermal evaporator, respectively transparency and energy bandgap were changed by the thickness of silver layer. To fabricate metal oxide metal (OMO) structure, IGZO sputtered on a corning 1,737 glass substrate was used as bottom oxide material and then silver was evaporated on the IGZO layer, finally IGZO was sputtered on the silver layer we get the final OMO structure. The radio-frequency power of the target was fixed at 30 W. The chamber pressure was set to $6.0{\times}10^{-3}$ Torr, and the gas ratio of Ar was fixed at 25 sccm. The silver thickness are varied from 3 to 15 nm. The OMO thin films was analyzed using XRD. XRD shows broad peak which clearly indicates amorphous phase. ZnO, AZO, OMO show the peak [002] direction at $34^{\circ}$. This indicate that ZnO, AZO OMO structure show the crystalline peak. Average transmittance of visible region was over 75%, while that of infrared region was under 20%. Energy band gap of OMO layer was increased with increasing thickness of Ag layer. As a result total transmittance was decreased.

Evaluation on the Corrosion Resistance of Three Types of Galvanizing Steels in 1% H2SO4 Solution

  • Moon, Kyung-Man;Lee, Sung-Yul;Lee, Myeong-Hoon;Jeong, Jae-Hyun;Baek, Tae-Sil
    • Journal of the Korean institute of surface engineering
    • /
    • v.49 no.3
    • /
    • pp.245-251
    • /
    • 2016
  • Galvanizing method has been extensively used to the numerous constructional steels such as a guard rail of high way, various types of structural steel for ship building and various types of steels for the industrial fields etc.. However, the galvanized structures would be inevitably corroded rapidly with increasing exposed time because an acid rain due to environmental contamination has been much dropped more and more. Therefore, it has been made an effort to improve the corrosion resistance of the galvanizing film through various methods. In this study, comparison evaluation on the corrosion resistance of three types of the samples, that is, the hot dip galvanizing with pure zinc(GI), the hot dip galvanizing of alloy bath with zinc and aluminum(GL) and the pure zinc galvanizing steel immersed again to chromate treatment bath(Chro.)were investigated using electrochemical methods in 1% $H_2SO_4$ solution. The Chro. and GI samples exhibited the highest and lowest corrosion resistance respectively in 1% $H_2SO_4$ solution, however, the GI sample revealed the highest impedance at 0.01 Hz due to its high resistance polarization caused by corrosion products deposited on the surface, while Chro. sample exhibited the lowest impedance at 0.01 Hz because of little corrosion products on the surface. Consequently, it is suggested that the chromate treated steel has a better corrosion resistance in acid environment compared to pure galvanizing(GI) or galvalume(GL) steels.

Formation and Progression of Intermetallic phase on Iron Base Alloy PTA weld overlay in Molten Zn Alloys (용융 Zn 합금에서 Fe합금의 PTA 오버레이 용접 금속간 상의 형성과 진행)

  • Zulkarnain, Zulkarnain;Baek, E.R.
    • Proceedings of the KWS Conference
    • /
    • 2009.11a
    • /
    • pp.95-95
    • /
    • 2009
  • Zinc coatings provide the most effective and economical way of protecting steel against corrosion. There are three types of galvanizing lines typically used in production line in galvanizing industries,Galvanize (GI) coating (Zn-0.1-0.3%Al), Galfan coating (Zn-5%Al), Galvalume(GL) coating (45%Zn-Al). In continuous Galvanizing lines, the immersed bath hardware (e.g. bearings, sink, stabilizer, and corrector rolls, and also support roll arms and snout tip) are subjected to corrosion and wear failure. Understanding the reaction of these materials with the molten Zn alloy is becomes scientific and commercial interest. To investigate the reaction with molten Zn alloys, static immersion test performed for 4, 8, 16, and 24 Hr. Two different baths used for the static immersion, which are molten Zn and molten Zn-55%Al. Microstructures characterization of each of the materials and intermetallic layer formed in the reaction zone was performed using optical microscope, SEM and EDS. The thickness of the reaction layer is examined using image analysis to determine the kinetics of the reaction. The phase dominated by two distinct phase which are eutectic carbide and matrix. The morphology of the intermetallic phase formed by molten Zn is discrete phase showing high dissolution of the material, and the intermetallic phase formed by Zn-55wt%Al is continuous. Aluminum reacts readily with the materials compare to Zinc, forming iron aluminide intermetallic layer ($Fe_2Al_5$) at the interface and leaving zinc behind.

  • PDF

Preparation and Properties of EPDM/Zinc Methacrylate Hybrid Composites (에틸렌 프로필렌 디엔 고무/메타크릴산아연 하이브리드 복합체의 제조와 물성에 관한 연구)

  • Chang, Young-Wook;Won, Jong-Hoon;Joo, Hyun-Seok
    • Elastomers and Composites
    • /
    • v.40 no.1
    • /
    • pp.59-65
    • /
    • 2005
  • Zinc methacrylate(ZMA) was incorporated into ethylene-propylene diene rubber(EPDM) by direct mixing of the metal salt with the rubber or was in-situ prepared in the rubber matrix through neutralization reaction of zinc oxide(ZnO) and methacrylic acid(MAA). Tensile and tear tests showed that ZMA had a great reinforcing effect for the EPDM. It was also found that ZMA reinforced EPDM vulcanizates can retain their mechanical properties under thermo-oxidative aging. Moreover the incorporation of ZMA induces a substantial improvement in the adhesive strength of the EPDM onto aluminum substrate. The reinforcing effect and an enhancement in adhesion was greatly manifested when the ZMA is in-situ formed with an excess amount of ZnO. The extraordinary improvement in the properties is supposed to be related with the formation of ionic crosslink as well as the degree of dispersion or ZMA domain in the rubber matrix.

Velocity Field Measurement of Flow Inside SNOUT of Zinc Plating Process ( I ) (용융아연 도금공정에서의 SNOUT 내부 유동장 해석 ( I ))

  • Shin, Dae Sig;Choi, Jayho;Lee, Sang-Joon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.10
    • /
    • pp.1265-1273
    • /
    • 1999
  • PIV(Particle Image Velocimetry) velocity field measurements inside the snout of a1/10 scale model of the Zn plating process were carried out at the strip speed $V_s=1.5m/s$. Aluminum powder particles ($1{\mu}m$) and atomized olive oil ($3{\mu}m$) were used as seeding particles to simulate the molten Zinc flow and deoxidization gas flow, respectively. A pulsed Nd:Yag laser and a $2K{\times}2K$ high-resolution CCD camera were synchronized for the PIV velocity field measurement. From flow visualization study, it is found that the liquid flow in the Zn pot is dominantly governed by the uprising flow caused by the rotating sink roll, with its effect on the steel strip inside the snout largely diminished by installing of the snout. The deoxidization gas flow in front of the strip inside the snout can be characterized by a large-scale vortex rotating clockwise direction formed by the moving strip. In the rear side of the strip, a counter-clockwise vortex is formed and some of the flow entrained by the moving strip impinges on the free surface of molten zinc. The liquid flow in front of the strip is governed by the flow entering the snout, caused by the spinning sink roll. Just below the free surface a counter-clockwise vortex is formed near the snout wall. The moving strip affects dominantly the flow behind the strip inside the snout, and large amount of the liquid flow follows the moving strip toward the sink roll. The thickness of the flow following the strip is very thin in the front side due to the uprising flow, however thick boundary layer is formed in the rear side of the strip. Its thickness is increased as moving downstream toward the sink roll. Inside the snout, the deoxidization gas flow above the free surface is much faster than the liquid flow in the zinc pot. Due to the larger influx of the flow following the moving strip in the rear side of the strip, higher percentage of imperfection can be anticipated on the rear surface of the strip.

IN VITRO STUDY OF THE TENSILE BOND STRENGTH OF CEMENT-RETAINED SINGLE IMPLANT PROSTHESIS BY THE VARIOUS PROVISIONAL LUTING CEMENTS AND THE SURFACE TREATMENT OF ABUTMENTS

  • Lee, Hwa-Yeon;Lee, Ho-Sang
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.40 no.3
    • /
    • pp.296-305
    • /
    • 2002
  • The main disadvantage of cement-retained implant restorations is their difficulty in retrievability. Advocates of cemented implant restorations frequently state that retrievability of the restoration can be maintained if a provisional cement is used. The purpose of this study was to find the optimal properties of provisional luting cements and the surface treatment of abutments in single implant abutment system. 30 prefabricated implant abutments, height 8mm, diameter 6mm, 3-degree taper per side, with light chamfer margins were obtained. Three commercially available provisional luting agents which were all zinc oxide eugenol type ; Cavitec, TempBond and TempBond NE were evaluated. No cement served as the control. TempBond along with vaseline, a kind of petrolatum (2:1 ratio) was also evaluated. Ten out of thirty abutments were randomly selected and abutment surfaces were sandblasted with $50{\mu}m$ aluminum oxide. Another ten abutments were sandblasted with $250{\mu}m$ aluminum oxide. A vertical groove, 1 mm deep and 5mm long was cut in each twenty abutments. Ten of them were sandblasted with $50{\mu}m$ aluminum oxide. The full coverage casting crowns were cemented to the abutments with the designated provisional luting agent. Specimens were stored in distilled water at $37^{\circ}C$ for 24 hours. Each specimen was attached to a universal testing machine. A crosshead speed of 0.5mm/min was used to apply a tensile force to each specimen. Within the limitations of this in vitro study, the following conclusions were drawn: 1. Tensile bond strength of provisional luting cements in no surface treatment decreased with the sequence of TempBond NE, TempBond, Cavitec, TempBond with vaseline, no cement. 2. Tensile bond strength more increased by surface treatment. Sandblasting with $250{\mu}m$ aluminum oxide exhibited the highest tensile bond strength in the abutment cemented with TempBond NE and sandblasting with $50{\mu}m$ aluminum oxide exhibited the highest tensile bond strength in cemented with TempBond. 3. In the aspect of a groove formation, tensile bond strength significantly increased in TempBond with vaseline only and the others had no significant effect on tensile bond strength.

A Study on the Slitting Working by Finite Element Analysis (유한요소해석에 의한 슬리팅가공에 관한 연구)

  • Han, K.T.;Seo, J.K.
    • Journal of Power System Engineering
    • /
    • v.5 no.3
    • /
    • pp.56-63
    • /
    • 2001
  • A slitter is a sort of machinery to cut sheet materials in rolls continuously in the longitudinal direction. Recently slitter line users have requiring higher quality and precision in products in addition to high productivity. A finite element analysis has been performed to investigate the effect of processing factors on shear planes in the slitting of Shrinkage Band(S,K.B.). For the analysis, Hot-dip 55% aluminum-zinc alloy-coated steel sheets and coils(SAZCC) is selected as a material. The results obtained are that deformation was concentrated along the very narrow zone and the maximum slitting load decreases by increasing the knife clearance. Also effective strain decreases according to the clearance increases.

  • PDF