• 제목/요약/키워드: Zinc oxide(ZnO)

검색결과 779건 처리시간 0.023초

Physical and nuclear shielding properties of newly synthesized magnesium oxide and zinc oxide nanoparticles

  • Rashad, M.;Tekin, H.O.;Zakaly, Hesham MH.;Pyshkina, Mariia;Issa, Shams A.M.;Susoy, G.
    • Nuclear Engineering and Technology
    • /
    • 제52권9호
    • /
    • pp.2078-2084
    • /
    • 2020
  • Magnesium oxide (MgO) and Zinc oxide (ZnO) nanoparticles (NPs) have been successfully synthesized by solid-solid reaction method. The structural properties of ZnO and MgO NPs were studied using X-ray diffraction (XRD) and scanning electron microscopy (SEM). XRD results indicated a formation of pure MgO and ZnO NPs. The mean diameter values of the agglomerated particles were around to be 70 and 50 nm for MgO and ZnO NPs, respectively using SEM analysis. Further, a wide-range of nuclear radiation shielding investigation for gamma-ray and fast neutrons have been studied for Magnesium oxide (MgO) and Zinc oxide (ZnO) samples. FLUKA and Microshield codes have been employed for the determination of mass attenuation coefficients (μm) and transmission factors (TF) of Magnesium oxide (MgO) and Zinc oxide (ZnO) samples. The calculated values for mass attenuation coefficients (μm) were utilized to determine other vital shielding properties against gamma-ray radiation. Moreover, the results showed that Zinc oxide (ZnO) nanoparticles with the lowest diameter value as 50 nm had a satisfactory capacity in nuclear radiation shielding.

수열 합성법에 의한 Zinc Oxide의 제조 및 Tartrazine 분해 특성 (Preparation of Zinc Oxide by Hydrothermal Precipitation and Degradation of Tartrazine)

  • 나석은;정상구;정갑섭;김시영;주창식
    • Korean Chemical Engineering Research
    • /
    • 제49권6호
    • /
    • pp.752-757
    • /
    • 2011
  • 암모니아수와 zinc acetate로부터 액상 수열합성법에 의한 ZnO의 제조에 있어 반응온도, 반응물의 농도와 혼합방법, 용액의 pH 등 반응조건에 따른 ZnO 입자의 형상과 입자분포 등 제조특성을 고찰하고, UV 조사하에 tartrazine의 광분해를 측정하여 합성된 ZnO의 광촉매로서의 성능을 확인하였다. 반응용액의 pH가 높을수록 ZnO 입자의 평균 크기는 증가하였고, zinc acetate의 농도가 증가할수록 그리고 반응온도가 증가할수록 입자의 크기는 감소하였다. 반응용액의 혼합시 암모니아수 주입 후에 zinc acetate를 첨가하였을 경우 더 작은 입자를 얻을 수 있었다. 최소 크기의 ZnO 입자의 생성을 위한 최적 조건은 용액의 pH 11.2, zinc acetate의 농도 0.6 M, 반응온도 $90^{\circ}C$였으며, 입자 평균크기는 3.133 ${\mu}$m이었다. 합성온도 $80^{\circ}C$, zinc acetate 농도 1.0M 및 반응용액의 pH 11.2의 조건에서 합성된 ZnO에 의한 tartrazine의 광촉매 분해는 분해시간 60분에서 약 97%의 분해율을 보였다.

2차원 배열구조를 갖는 ZnO 마이크로 막대 구조체의 수직정렬 (Vertical Alignment of Zinc Oxide Micro Rod with Array of 2-Dimensions)

  • 이역규;전찬욱;남효덕
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 하계학술대회 논문집 Vol.9
    • /
    • pp.459-460
    • /
    • 2008
  • Zinc oxide micro rods were fabricated using as chemical bath deposition ok photolithography. Vertically aligned Zinc Oxide rod array as grown by chemical bath deposition method on Zinc Oxide template layer. The ZnO template layer was deposited on glass and the pattering was made by standard photolithography technique. The selective growth of ZnO micro rods were achieved with the masked ZnO template layer substrate. The fabricated ZnO micro rods were found to be single crystalline and have grown along hexagonal c-axis direction of (0002) which is same as the preferred growth orientation of ZnO template layer. The ZnO micro-rod array structure was implemented as a window layer in Cu(InGa)Se2 solar cell and its effect on photovoltaic efficiency was examined.

  • PDF

RF magnetron sputtering법으로 ZnO박막 제조시 기판온도에 따른 c축 배향성에 관한 연구 (A study on c-axis preferred orientation at a various substrate temperature of ZnO thin film deposited by RF magnetron sputtering)

  • 이종덕;송준태
    • E2M - 전기 전자와 첨단 소재
    • /
    • 제9권2호
    • /
    • pp.196-203
    • /
    • 1996
  • The highly c-axis oriented zinc oxide thin films were deposited on Sapphire(0001) substrates by reactive RF magnetron sputtering. The characteristics of zinc oxide thin films on RF power, substrate-target distance, and substrate temperature were investigated by XRD, SEM and EDX analyses. The physical characteristics of zinc oxide thin films changed with various deposition conditions. The higher substrate temperatures were, The better crystallinity of zinc oxide thin films. The highly c-axis oriented zinc oxide thin films were obtained at sputter pressure 5mTorr, rf power 200W, substrate temperature 350.deg. C, substrate-target distance 5.5cm. In these conditions, the resistivity of zinc oxide thin films deposited on pt/sapphire was 12.196*10$^{9}$ [.ohm.cm].

  • PDF

전기방사를 이용한 Al이 첨가된 ZnO 나노섬유의 제조 및 광학 특성평가 (Optical properties of Al doped ZnO Nanofibers Prepared by electrospinning)

  • 송찬근;윤종원
    • 한국결정성장학회지
    • /
    • 제21권5호
    • /
    • pp.205-209
    • /
    • 2011
  • ZnO는 반도전성과 초전도성을 나타내며 광학적으로도 독특한 재료로 가스센서, 태양전지, 광학도파관 등 여러 방면에 널리 활용되고 있다. 본 논문에서는 이러한 ZnO에 Al을 첨가함에 따라 광학적 특성에 어떠한 영향을 미치는지 알아보기 위하여 ZnO에 Al 첨가량 변화에 따른 나노구조체를 제작하여 특성을 비교하였다. ZnO 용액은 PVP, ethanol, zinc acetate를 이용하여 Sol의 형태로 제작하였으며, Al첨가용액을 넣어 Al이 첨가된 ZnO Sol을 제작하였다. 제작된 Sol을 전기 방사법을 이용하여 나노구조체를 제조하였다. 제조된 섬유들을 각각 300, 500, $700^{\circ}C$로 열처리 한 후 나노 구조체를 XRD, XPS, SEM을 이용하여 분석하였다. 또한 TGA, DSC를 이용하여 온도변화에 따른 질량 및 열량의 변화를 측정하였다. UVvis를 이용하여 ZnO와 Al이 첨가된 ZnO의 흡광도를 측정 비교하였다.

A review of zinc oxide photoanode films for dye-sensitized solar cells based on zinc oxide nanostructures

  • Tyona, M.D.;Osuji, R.U.;Ezema, F.I.
    • Advances in nano research
    • /
    • 제1권1호
    • /
    • pp.43-58
    • /
    • 2013
  • Zinc oxide (ZnO) is a unique semiconductor material that exhibits numerous useful properties for dye-sensitized solar cells (DSSCs) and other applications. Various thin-film growth techniques have been used to produce nanowires, nanorods, nanotubes, nanotips, nanosheets, nanobelts and terapods of ZnO. These unique nanostructures unambiguously demonstrate that ZnO probably has the richest family of nanostructures among all materials, both in structures and in properties. The nanostructures could have novel applications in solar cells, optoelectronics, sensors, transducers and biomedical sciences. This article reviews the various nanostructures of ZnO grown by various techniques and their application in DSSCs. The application of ZnO nanowires, nanorods in DSSCs became outstanding, providing a direct pathway to the anode for photo-generated electrons thereby suppressing carrier recombination. This is a novel characteristic which increases the efficiency of ZnO based dye-sensitized solar cells.

플라스틱 기판에 증착한 ZnO:Al 박막의 특성에 미치는 스퍼터 압력 효과 (Effects of Sputter Pressure on the Properties of Sputtered ZnO:Al Films Deposited on Plastic Substrate)

  • 이재형
    • 한국전기전자재료학회논문지
    • /
    • 제22권3호
    • /
    • pp.277-283
    • /
    • 2009
  • In this paper, aluminum doped zinc oxide (ZnO:Al) thin films on plastic substrate such as poly carbonate (PC), polyethylene terephthalate (PET) were prepared by RF magnetron sputtering method for flexible solar cell applications. Effects of the sputter pressure on the structural, electrical and optical properties were investigated. The crystallinity and the degree of the (002) orientation were deteriorated with increasing the sputter pressure. When the sputter pressure was higher, the conductivity of ZnO:Al films was improved because of the high carrier concentration and the Hall mobility. High quality ZnO:Al films with resistivity as low as $1.9{\times}10^{-3}{\Omega}-cm$ and the optical transmittance over 80 % in the visible region have been obtained on PC substrate at 2 mTorr.

Comparative study on the effects of micro- and nano-sized zinc oxide supplementation on zinc-deficient mice

  • Ja-Seon Yoon;Sang Yoon Nam;Beom Jun Lee;Hyun Jik Lee
    • Journal of Veterinary Science
    • /
    • 제24권1호
    • /
    • pp.3.1-3.13
    • /
    • 2023
  • Background: Zinc (Zn) is an essential cofactor for physiological homeostasis in the body. Zn oxide (ZnO), an inorganic compound that supplies Zn, exists in various sizes, and its bioavailability may vary depending on the size in vivo. However, comparative studies on the nutritional effects of micro-sized ZnO (M-ZnO) and nano-sized ZnO (N-ZnO) supplementation on Zn deficiency (ZnD) animal models have not been reported. Objectives: This study investigated the nutritional bioavailability of N-ZnO and M-ZnO particles in dietary-induced ZnD mice. Methods: Animals were divided into six experimental groups: normal group, ZnD control group, and four ZnO treatment groups (Nano-Low, Nano-High, Micro-Low, and MicroHigh). After ZnD induction, N-ZnO or M-ZnO was administered orally every day for 4 weeks. Results: ZnD-associated clinical signs almost disappeared 7 days after N-ZnO or M-ZnO administration. Serum Zn concentrations were higher in the Nano-High group than in the ZnD and M-ZnO groups on day 7 of ZnO treatment. In the liver and testis, Nano-Low and Nano-High groups showed significantly higher Zn concentrations than the other groups after 14-day treatment. ZnO supplementation increased Mt-1 mRNA expression in the liver and testis and Mt-2 mRNA expression in the liver. Based on hematoxylin-and-eosin staining results, N-ZnO supplementation alleviated histological damage induced by ZnD in the testis and liver. Conclusions: This study suggested that N-ZnO can be utilized faster than M-ZnO for nutritional restoration at the early stage of ZnD condition and presented Mt-1 as an indicator of Zn status in the serum, liver, and testis.

3차원 ZnO 나노구조체 가스센서 (3-dimensional nanostructured ZnO gas sensor)

  • 박용욱;신현용;윤석진
    • 센서학회지
    • /
    • 제19권5호
    • /
    • pp.356-360
    • /
    • 2010
  • Due to the high surface-to-volume ratio, the 3-dimensional(3D) nanostructures of metal oxides are regarded as the best candidate materials for the chemical gas sensors. Here we have synthesised flower-like 3D zinc oxide nanostructures through a simple hydrothermal route. Specific surface area of the 3D zinc oxide nanostructures synthesised in different pH values from 9.0 to 12.0 were evaluated by using a BET analyzer and the results were compared with that of a zinc oxide thin film fabricated by rf sputtering. Using interdigitated electrodes, superior CO gas sensing properties of the 3D zinc oxide nanostructures on the ZnO thin film to those of the ZnO thin film were demonstrated.

폐과일껍질을 이용한 친환경 ZnO 나노분말 합성 (Enviroment-Friendly Synthesis of Nanocrystalline Zinc Oxide Particles Using Fruit Peel Extract)

  • ;송재숙;신평우;홍순익
    • 한국재료학회지
    • /
    • 제26권6호
    • /
    • pp.311-319
    • /
    • 2016
  • In this study, an environment-friendly synthetic strategy to process zinc oxide nanocrystals is reported. The biosynthesis method used in this study is simple and cost-effective, with reduced solvent waste via the use of fruit peel extract as a natural ligation agent. The formation of ZnO nanocrystals using a rambutan peel extract was observed in this study. Rambutan peels has the ability to ligate zinc ions as a natural ligation agent, resulting in ZnO nanochain formation due to the presence of an extended polyphenolic system over the whole incubation period. Via transmission electron microscopy, successful formation of zinc oxide nanochains was confirmed. TEM observation revealed that the bioinspired ZnO nanocrystals were spherical and/or hexagonal particles with sizes between 50 and 100 nm.