DOI QR코드

DOI QR Code

Comparative study on the effects of micro- and nano-sized zinc oxide supplementation on zinc-deficient mice

  • Ja-Seon Yoon (College of Veterinary Medicine and Veterinary Medicine Center, Chungbuk National University) ;
  • Sang Yoon Nam (College of Veterinary Medicine and Veterinary Medicine Center, Chungbuk National University) ;
  • Beom Jun Lee (College of Veterinary Medicine and Veterinary Medicine Center, Chungbuk National University) ;
  • Hyun Jik Lee (College of Veterinary Medicine and Veterinary Medicine Center, Chungbuk National University)
  • Received : 2022.07.27
  • Accepted : 2022.10.25
  • Published : 2023.01.31

Abstract

Background: Zinc (Zn) is an essential cofactor for physiological homeostasis in the body. Zn oxide (ZnO), an inorganic compound that supplies Zn, exists in various sizes, and its bioavailability may vary depending on the size in vivo. However, comparative studies on the nutritional effects of micro-sized ZnO (M-ZnO) and nano-sized ZnO (N-ZnO) supplementation on Zn deficiency (ZnD) animal models have not been reported. Objectives: This study investigated the nutritional bioavailability of N-ZnO and M-ZnO particles in dietary-induced ZnD mice. Methods: Animals were divided into six experimental groups: normal group, ZnD control group, and four ZnO treatment groups (Nano-Low, Nano-High, Micro-Low, and MicroHigh). After ZnD induction, N-ZnO or M-ZnO was administered orally every day for 4 weeks. Results: ZnD-associated clinical signs almost disappeared 7 days after N-ZnO or M-ZnO administration. Serum Zn concentrations were higher in the Nano-High group than in the ZnD and M-ZnO groups on day 7 of ZnO treatment. In the liver and testis, Nano-Low and Nano-High groups showed significantly higher Zn concentrations than the other groups after 14-day treatment. ZnO supplementation increased Mt-1 mRNA expression in the liver and testis and Mt-2 mRNA expression in the liver. Based on hematoxylin-and-eosin staining results, N-ZnO supplementation alleviated histological damage induced by ZnD in the testis and liver. Conclusions: This study suggested that N-ZnO can be utilized faster than M-ZnO for nutritional restoration at the early stage of ZnD condition and presented Mt-1 as an indicator of Zn status in the serum, liver, and testis.

Keywords

References

  1. Vallee BL, Falchuk KH. The biochemical basis of zinc physiology. Physiol Rev. 1993;73(1):79-118. https://doi.org/10.1152/physrev.1993.73.1.79
  2. Camara F, Amaro MA. Nutritional aspect of zinc availability. Int J Food Sci Nutr. 2003;54(2):143-151.  https://doi.org/10.1080/0963748031000084098
  3. Takeda A, Tamano H. Insight into zinc signaling from dietary zinc deficiency. Brain Res Brain Res Rev. 2009;62(1):33-44. https://doi.org/10.1016/j.brainresrev.2009.09.003
  4. Kumar P, Lal NR, Mondal AK, Mondal A, Gharami RC, Maiti A. Zinc and skin: a brief summary. Dermatol Online J. 2012;18(3):1.
  5. Favier AE. The role of zinc in reproduction. Hormonal mechanisms. Biol Trace Elem Res. 1992;32(1-3):363-382. https://doi.org/10.1007/BF02784623
  6. Prasad AS, Schulert AR, Miale A Jr, Farid Z, Sandstead HH. Zinc and iron deficiencies in male subjects with dwarfism and hypogonadism but without ancylostomiasis, schistosomiasis or severe anemia. Am J Clin Nutr 1963;12:437-444. PUBMED 
  7. Prasad AS. Discovery of human zinc deficiency: 50 years later. J Trace Elem Med Biol. 2012;26(2-3):66-69. https://doi.org/10.1016/j.jtemb.2012.04.004
  8. Hennigar SR, Kelley AM, McClung JP. Metallothionein and zinc transporter expression in circulating human blood cells as biomarkers of zinc status: a systematic review. Adv Nutr. 2016;7(4):735-746. https://doi.org/10.3945/an.116.012518
  9. Babula P, Masarik M, Adam V, Eckschlager T, Stiborova M, Trnkova L, et al. Mammalian metallothioneins: properties and functions. Metallomics. 2012;4(8):739-750. https://doi.org/10.1039/c2mt20081c
  10. Palmiter RD. Protection against zinc toxicity by metallothionein and zinc transporter 1. Proc Natl Acad Sci U S A. 2004;101(14):4918-4923. https://doi.org/10.1073/pnas.0401022101
  11. Davis SR, Cousins RJ. Metallothionein expression in animals: a physiological perspective on function. J Nutr. 2000;130(5):1085-1088.
  12. Vallee BL. The function of metallothionein. Neurochem Int. 1995;27(1):23-33. https://doi.org/10.1016/0197-0186(94)00165-Q
  13. Eide DJ. The SLC39 family of metal ion transporters. Pflugers Arch. 2004;447(5):796-800. https://doi.org/10.1007/s00424-003-1074-3
  14. Chu A, Foster M, Ward S, Zaman K, Hancock D, Petocz P, et al. Zinc-induced upregulation of metallothionein (MT)-2A is predicted by gene expression of zinc transporters in healthy adults. Genes Nutr. 2015;10(6):44.
  15. Li CH, Shen CC, Cheng YW, Huang SH, Wu CC, Kao CC, et al. Organ biodistribution, clearance, and genotoxicity of orally administered zinc oxide nanoparticles in mice. Nanotoxicology. 2012;6(7):746-756. https://doi.org/10.3109/17435390.2011.620717
  16. Wang B, Feng WY, Wang TC, Jia G, Wang M, Shi JW, et al. Acute toxicity of nano- and micro-scale zinc powder in healthy adult mice. Toxicol Lett. 2006;161(2):115-123. https://doi.org/10.1016/j.toxlet.2005.08.007
  17. Klaine SJ, Alvarez PJ, Batley GE, Fernandes TF, Handy RD, Lyon DY, et al. Nanomaterials in the environment: behavior, fate, bioavailability, and effects. Environ Toxicol Chem. 2008;27(9):1825-1851. https://doi.org/10.1897/08-090.1
  18. Zhang Y, Nayak TR, Hong H, Cai W. Biomedical applications of zinc oxide nanomaterials. Curr Mol Med. 2013;13(10):1633-1645. https://doi.org/10.2174/1566524013666131111130058
  19. Vimercati L, Cavone D, Caputi A, De Maria L, Tria M, Prato E, et al. Nanoparticles: an experimental study of zinc nanoparticles toxicity on marine crustaceans. general overview on the health implications in humans. Front Public Health. 2020;8:192.
  20. Jin M, Li N, Sheng W, Ji X, Liang X, Kong B, et al. Toxicity of different zinc oxide nanomaterials and dosedependent onset and development of Parkinson's disease-like symptoms induced by zinc oxide nanorods. Environ Int. 2021;146:106179.
  21. Chen Q, Li M, Wang X. Enzymology properties of two different xylanases and their impacts on growth performance and intestinal microflora of weaned piglets. Anim Nutr. 2016;2(1):18-23. https://doi.org/10.1016/j.aninu.2016.02.003
  22. Monse C, Raulf M, Jettkant B, van Kampen V, Kendzia B, Schurmeyer L, et al. Health effects after inhalation of micro- and nano-sized zinc oxide particles in human volunteers. Arch Toxicol. 2021;95(1):53-65.   https://doi.org/10.1007/s00204-020-02923-y
  23. Tuerk MJ, Fazel N. Zinc deficiency. Curr Opin Gastroenterol. 2009;25(2):136-143. https://doi.org/10.1097/MOG.0b013e328321b395
  24. Takeda A, Tamano H, Tochigi M, Oku N. Zinc homeostasis in the hippocampus of zinc-deficient young adult rats. Neurochem Int. 2005;46(3):221-225. https://doi.org/10.1016/j.neuint.2004.10.003
  25. Cho YE, Lomeda RA, Ryu SH, Sohn HY, Shin HI, Beattie JH, et al. Zinc deficiency negatively affects alkaline phosphatase and the concentration of Ca, Mg and P in rats. Nutr Res Pract. 2007;1(2):113-119. https://doi.org/10.4162/nrp.2007.1.2.113
  26. Neely CL, Barkey RE, Hernandez CM, Flinn JM. Prophylactic zinc supplementation modulates hippocampal ionic zinc and partially remediates neurological recovery following repetitive mild head injury in mice. Behav Brain Res. 2022;430:113918.
  27. Tasman-Jones C. Zinc deficiency states. Adv Intern Med. 1980;26:97-114. PUBMED 
  28. Tapiero H, Tew KD. Trace elements in human physiology and pathology: zinc and metallothioneins. Biomed Pharmacother. 2003;57(9):399-411. https://doi.org/10.1016/S0753-3322(03)00081-7
  29. Hirano T, Murakami M, Fukada T, Nishida K, Yamasaki S, Suzuki T. Roles of zinc and zinc signaling in immunity: zinc as an intracellular signaling molecule. Adv Immunol. 2008;97:149-176. https://doi.org/10.1016/S0065-2776(08)00003-5
  30. Wada L, Turnlund JR, King JC. Zinc utilization in young men fed adequate and low zinc intakes. J Nutr. 1985;115(10):1345-1354. https://doi.org/10.1093/jn/115.10.1345
  31. Grungreiff K, Reinhold D, Wedemeyer H. The role of zinc in liver cirrhosis. Ann Hepatol. 2016;15(1):7-16. https://doi.org/10.5604/16652681.1184191
  32. Hambidge KM, Miller LV, Westcott JE, Sheng X, Krebs NF. Zinc bioavailability and homeostasis. Am J Clin Nutr. 2010;91(5):1478S-1483S. https://doi.org/10.3945/ajcn.2010.28674I
  33. Elgazar V, Razanov V, Stoltenberg M, Hershfinkel M, Huleihel M, Nitzan YB, et al. Zinc-regulating proteins, ZnT-1, and metallothionein I/II are present in different cell populations in the mouse testis. J Histochem Cytochem. 2005;53(7):905-912. https://doi.org/10.1369/jhc.4A6482.2005
  34. Yamaguchi S, Miura C, Kikuchi K, Celino FT, Agusa T, Tanabe S, et al. Zinc is an essential trace element for spermatogenesis. Proc Natl Acad Sci U S A. 2009;106(26):10859-10864. https://doi.org/10.1073/pnas.0900602106
  35. Punnoose A, Dodge K, Rasmussen JW, Chess J, Wingett D, Anders C. Cytotoxicity of ZnO nanoparticles can be tailored by modifying their surface structure: a green chemistry approach for safer nanomaterials. ACS Sustain Chem& Eng. 2014;2(7):1666-1673. https://doi.org/10.1021/sc500140x
  36. Ng CT, Yong LQ, Hande MP, Ong CN, Yu LE, Bay BH, et al. Zinc oxide nanoparticles exhibit cytotoxicity and genotoxicity through oxidative stress responses in human lung fibroblasts and Drosophila melanogaster. Int J Nanomedicine. 2017;12:1621-1637. https://doi.org/10.2147/IJN.S124403
  37. Foster M, Samman S. Zinc and regulation of inflammatory cytokines: implications for cardiometabolic disease. Nutrients. 2012;4(7):676-694. https://doi.org/10.3390/nu4070676
  38. Prasad AS. Zinc is an antioxidant and anti-inflammatory agent: its role in human health. Front Nutr. 2014;1:14.
  39. Vasak M, Hasler DW. Metallothioneins: new functional and structural insights. Curr Opin Chem Biol. 2000;4(2):177-183. https://doi.org/10.1016/S1367-5931(00)00082-X
  40. Yasuno T, Okamoto H, Nagai M, Kimura S, Yamamoto T, Nagano K, et al. The disposition and intestinal absorption of zinc in rats. Eur J Pharm Sci. 2011;44(3):410-415. https://doi.org/10.1016/j.ejps.2011.08.024