• Title/Summary/Keyword: Zinc exposure

Search Result 170, Processing Time 0.022 seconds

A study on Zn corrosion resistance of WC spray coating sealed with carbon nanotube suspensions (탄소 나노튜브 혼합액으로 봉공처리된 텅스텐 카바이드 용사층의 아연 내부식성에 대한 연구)

  • Kim, Bong-Hun;Lee, Bo-Young
    • Journal of Welding and Joining
    • /
    • v.33 no.1
    • /
    • pp.49-53
    • /
    • 2015
  • An experimental study was conducted to investigate the effect of carbon nanotubes on the zinc corrosion resistance of sealing layer formed on the Tungsten Carbide spray coating. Using the nanotubes, a sealing agent in the form of solid-liquid suspensions was made and applied to the surface of spray coating. A series of experiments, consisted of three stages such as preparation of test piece, molten-pot immersion test, and evaluation of micro structure, were undertaken to demonstrate complicated interaction existing between zinc ions and sealing layer containing the nanotubes. Experimental results showed newly developed sealing layer were less susceptible to corrosion and thus coated layer was well protected even in the case of 10 days exposure. Comparison of the micro structure after molten pot test also indicated that carbon nanotubes still remained in the matrix and organized more reliable frame work constituted with boron nitride and chromium compound. It was revealed that carbon nanotubes in the sealing layer played positive role to enhance zinc corrosion resistance in the perspective of both fibrous structure and inherent chemical stability.

Enhancement of Hydrophobicity by a Heat Treatment of Zinc Aluminate Thin Film Deposited on Glass Substrate (글라스 기판 위에 증착된 Zin Aluminate 박막의 열처리를 통한 소수성 특성의 향상)

  • Seo, Sang-Young;Yoon, Soon-Gil
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.33 no.4
    • /
    • pp.249-254
    • /
    • 2020
  • An 80 nm thick zinc aluminate thin film was deposited on a glass substrate via radio-frequency (rf) magnetron sputtering and heat treated to analyze changes in the wetting angles due to a surface modification. The thin films were modified from hydrophilic to hydrophobic by a simple thermal treatment. The surface modification from a heat treatment increased the wetting angles up to 111°, which was explained by the relationship with the excess surface area. The wetting angles of the annealed thin films decreased with increasing exposure time under ambient conditions, which was attributed to the oxygen vacancies in the films that were introduced during deposition. The annealed thin films were treated by ionized oxygen via oxygen plasma. After the oxygen plasma treatment, the decreased wetting angles were maintained at ~95° for 11 days.

Flexural performance of RC beams incorporating Zinc-rich and epoxy bonding coating layers exposed to fire

  • Tobbala, Dina E.;Rashed, Ahmed S.;Tayeh, Bassam A.
    • Structural Engineering and Mechanics
    • /
    • v.82 no.2
    • /
    • pp.163-172
    • /
    • 2022
  • Zinc-rich epoxy (ZRE) is used to overcome corrosion problems in reinforced concrete (RC) beams and coat steel rebars to protect them from humidity and chlorides. An extra coating layer of Sikadur-31 epoxy (SDE) is utilised to increase bond strength because the use of ZRE reduces the bond strength between concrete and steel rebars. However, the low melting point of SDE indicates that concrete specimens are vulnerable to fire. An experimental investigation on flexural performance of RC beams incorporating ZRE-SDE coating of steel rebars that were destroyed by fire is performed in this study. Twenty beams of five concrete mixes with different cementitious contents were tested to compare fire exposure for coated and uncoated rebars of the same beams at room temperature and determine the optimal cementitious content. Scanning electron microscopy (SEM) was also applied to investigate characteristics of fired mixture samples. Results showed that the use of SDE-ZRE at room temperature improves flexural strengths of the five mixes compared with uncoated rebars with percentages ranging from 8.5% to 12.3%. All beams with SDE-ZRE lost approximately 50% of their flexural strength due to firing. Moreover, the mix incorporating SF (silica fume) of 15% and cement content of 400 kg/m3 introduces optimum behaviour compared with other mixes. All results were supported and verified by the SEM analysis and compressive strength of cubic specimens of the same mixes.

Environmental Genomics Related to Environmental Health Biomarker

  • Kim, Hyun-Mi;Kim, Dae-Seon;Chung, Young-Hee
    • Molecular & Cellular Toxicology
    • /
    • v.2 no.2
    • /
    • pp.75-80
    • /
    • 2006
  • Biomarkers identify various stages and interactions on the pathway from exposure to disease. The three categories of biomarkers are those measuring susceptibility, exposure and effect. Susceptibility biomarkers are identifiable genetic variations affecting absorption, metabolism or response to environmental agents. Biomarkers of exposure indicate the amount of a foreign compound that is absorbed into the body. Biological measurements performed on human tissues are vastly expanding the capabilities of classical epidemiology, which has relied primarily on estimates of human exposure derived form chemical levels in the air, water, and other exposure routes. Biomarkers of exposure indicate the amount of a foreign compound that is absorbed into the body. Biological measurements performed on human tissues are vastly expanding the capabilities of classical epidemiology, which has relied primarily on estimates of human exposure derived form chemical levels in the air, water, and other exposure routes. The biomarker response is typical of chemical pollution by specific classes of compound, such as (i) heavy metals (mercury, cadmium, lead, zinc), responsible for the induction of metallothionein synthesis, and (ii) organochlorinated pollutants (PCBs, dioxins, DDT congeners) and polycyclic aromatic hydrocarbons (PAHs), which induce the mixed function oxygenase (MFO) involved in their bio transformations and elimination. Currently genomic researches are developed in human cDNA clone subarrays oriented toward the expression of genes involved in responses to xenobiotic metabolizing enzymes, cell cycle components, oncogenes, tumor suppressor genes, DNA repair genes, estrogen-responsive genes, oxidative stress genes, and genes known to be involved in apoptotic cell death. Several research laboratories in Korea for kicking off these Environmental Genomics were summarized.

Corrosion Behaviour of Some Alloys in Tropical Urban and Marine Atmospheres

  • Dang, Vu Ngoan;Bui, Ba Xuan;Nguyen, Nhi Tru
    • Corrosion Science and Technology
    • /
    • v.7 no.2
    • /
    • pp.125-129
    • /
    • 2008
  • Results of corrosion testing for different grades of titanium, copper, zinc, alluminium alloys and steels after two years of outdoor exposure under humid tropical urban and marine conditions have been presented and discussed. Mass loss and corrosion product characteristics for the exposed specimens at Hanoi testing site with high humidity and Nhatrang marine stations (at 100 and 1,000 meters distances from sea) with different airborne salinities (35.9 and $90.0mg/m^2.d$ respectively) have been selected for investigation. From time dependence of the specimen mass loss and corrosion product characteristics, the strong influence of environmental parameters upon durability for the investigated metals and alloys has been demonstrated. Only titanium alloys show high resistance to the marine conditions. All the other specimens (copper, zinc, alluminium alloys and steels) have been underwent strong deterioration under influence of aerosol salinity. Results of corrosion products analysis have been also presented for characterization of environmental impact on the metal degradation processes.

Conducting ZnO Thin Film Fabrication by UV-enhanced Atomic Layer Deposition

  • Kim, Se-Jun;Kim, Hong-Beom;Seong, Myeong-Mo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.211.1-211.1
    • /
    • 2013
  • We fabricate the conductive zinc oxide(ZnO) thin film using UV-enhanced atomic layer deposition. ZnO is semiconductor with a wide band gap(3.37eV) and transparent in the visible region. ZnO can be deposited with various method, such as metal organic chemical vapour deposition, magnetron sputtering and pulsed laser ablation deposition. In this experiment, ZnO thin films was deposited by atomic layer deposition using diethylzinc (DEZ) and D.I water as precursors with UV irradiation during water dosing. As a function of UV exposure time, the resistivity of ZnO thin films decreased dramatically. We were able to confirm that UV irradiation is one of the effective way to improve conductivity of ZnO thin film. The resistivity was investigated by 4 point probe. Additionally, we confirm the thin film composition is ZnO by X-ray photoelectron spectroscopy. We anticipate that this UV-enhanced ZnO thin film can be applied to electronics or photonic devices as transparent electrode.

  • PDF

Study on Corrosion Resistance Performance of Zn Coating Applied by Arc Thermal and Plasma Arc Spray Process in Artificial Ocean Water (인공해양환경에서 Arc Thermal and Plasma Arc Spray 공법이 적용된 Zn 코팅 강재의 내식성능 평가에 관한 연구)

  • Jannat, Adnin Raihana;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.06a
    • /
    • pp.83-84
    • /
    • 2020
  • In present study, we have deposited the Zinc coating using arc thermal spray and plasma arc spray processes onto the steel substrate and durability of the deposited coating was evaluated. The bond adhesion result shows that plasma arc sprayed Zn coating exhibited higher in its value compared to arc thermal spray. SEM shows that Zn coating deposited by plasma arc process is more compact, less porous and adherent compare to arc spray process. The corrosion resistance properties are evaluated in artificial ocean water solution with exposure periods. EIS results show that total impedance at 0.01 Hz of plasma arc sprayed coating is higher than arc thermal spray owing to the compact and less porous morphology. It is concluded that plasma arc sprayed Zn coating is better than arc thermal spray process.

  • PDF

The Monitoring of Heavy Metals in Human Bloods of Middle School Students (중학생의 혈액 중 중금속 모니터링)

  • Park Hee Ra;Kim Meehye;Kwun Ki-Sung;Kim Soon Ki;Heo Su-Jeong;Kim Kwang_Jin;Yum Tae-Kyung;Choi Kwang Sik;Kim Soo Yeon
    • Journal of Food Hygiene and Safety
    • /
    • v.20 no.2
    • /
    • pp.83-88
    • /
    • 2005
  • This study was conducted to estimate the contents of heavy metals including lead, cadmium, zinc, copper as well as iron status(serum iron, total iron binding capacity, feritin etc)in blood samples of middle school students(n=300). The contents of heavy metals were determined using the GF-AAS (Graphite furnace Atomic Absorption Spectrophotometer). The microwave digestion method and dilution method were compared. The dilution method showed the better recovery and detection limit than microwave digestion method. The values of toxic metals in whloe blood of boys & girls were 3.46 & 3.05 for Pb,0.063 & 0.065 for Cd respectively (ug/dL). Also the values of trace metals in serum of boys & girls were 105.9 & 92.6 for Zn, 98.3 & 99.0 for Cu respectively (ug/dL). The prevalence of iron deficiency was $7.5\%$ in 146 boys and $14.3\%$ in 156 girls. The mean values of lead in girls were higher in iron deficiency, iron deficiency anemia and anemia groups than normal group. The mean values of lead and zinc were higher in boys compared to those in girls(P<0.05), the mean values of cadmium and copper in boys were similar to those in girls. Our results of toxic metals such as Pb & Cd showed lower to CDC's(Centers for Disease Control) blood lead levels of concern for children, 10 ug/dL.

Hepatic Expression of Cu/Zn-Superoxide Dismutase Transcripts in Response to Acute Metal Exposure and Heat Stress in Hemibarbus mylodon (Teleostei: Cypriniformes)

  • Cho, Young-Sun;Bang, In-Chul;Lee, Il-Ro;Nam, Yoon-Kwon
    • Fisheries and Aquatic Sciences
    • /
    • v.12 no.3
    • /
    • pp.179-184
    • /
    • 2009
  • Hemibarbus mylodon (Cypriniformes) is an endemic freshwater fish species in the Korean peninsula, for which urgent conservation efforts are needed. To understand their stress responses in relation to metal toxicity and thermal elevation, we performed a real-time RT-PCR-based expression assay of hepatic copper/zinc-superoxide dismutase (Cu/Zn-SOD), a key antioxidant enzyme, in response to experimental heavy metal exposure or heat treatment. The transcription of hepatic Cu/Zn-SOD was differentially modulated by acute exposure to Cu, cadmium (Cd), or Zn. Exposure to each metal at $5{\mu}M$ for 24 h revealed that Cu stimulated the mRNA expression of Cu/Zn-SOD to a greater extent than the other two heavy metals. The elevation in Cu/Zn-SOD transcripts in response to Cu exposure was dose-dependent (0.5 to $5{\mu}M$). Time course analysis of Cu/Zn-SOD expression in response to Cd exposure ($5{\mu}M$) revealed a transient pattern up to day 7. Exposure to thermal stress (an increase from 22 to $30^{\circ}C$ at a rate of $1^{\circ}C/h$ followed by $30^{\circ}C$ for 18 h) did not significantly alter SOD transcription, although heat shock protein 90 kDa (HSP90) transcription was positively correlated with an increase in temperature.

Fate and Bioaccumulation of Zinc Oxide Nanoparticles in a Microcosm (산화아연 나노물질의 미소생태계 내 거동 및 생물축적)

  • Kim, Eunjeong;Lee, Jae-woo;Jo, Eunhye;Sung, Hwa Kyung;Yoo, Sun Kyoung;Kim, Kyung-tae;Shin, Yu-jin;Kim, Ji-eun;Park, Sun-Young;Eom, Ig-chun;Kim, Pilje
    • Journal of Environmental Health Sciences
    • /
    • v.43 no.3
    • /
    • pp.194-201
    • /
    • 2017
  • Objectives: Zinc oxide nanoparticles (ZnO NPs) are widely used in various commercial products, but they are exposed to the environment and can induce toxicity. In this study, we investigated the environmental fate and bioaccumulation of ZnO NPs in a microcosm. Methods: The microcosm was composed of water, soil (Lufa Soil 2.2) and organisms (Oryzias latipes, Neocaridina denticulata, Semisulcospira libertina). Point five and 5 mg/L of ZnO NPs were exposed in the microcosm for 14 days. Total Zn concentrations were measured using an Inductively Coupled Plasma Mass Spectrometer (ICP-MS) and intracellular NPs were observed using Transmission Electron Microscopy (TEM). Results: In the initial stages of exposure, the Zn concentrations in water increased in all exposure groups and then decreased, while the Zn concentration in soil increased after three hours for the 5 mg/L solution. Zn concentrations also showed increasing trends in N. denticulata and S. libertina at 0.5 and 5 mg/L, and in O. latipes at 5 mg/L. Accumulation of NPs was found in the livers of O. latipes and hepatopancreas of N. denticulata and S. libertina. Conclusions: In the early stages of exposure, ZnO NPs remained in the water, and then were transported to the soil and test species. Unlike other species, total Zn concentrations in N. denticulata and S. libertina increased for both 0.5 mg/L and 5 mg/L. Therefore, ZnO NPs were more easily accumulated in zoobenthos than in fish.