• Title/Summary/Keyword: Zinc Plating Process

Search Result 23, Processing Time 0.018 seconds

Development of Single-Frame PIV Velocity Field Measurement Technique Using a High Resolution CCD Camera (고해상도 CCD카메라를 이용한 Single-Frame PIV 속도장 측정기법 개발)

  • Lee, Sang-Joon;Shin, Dae-Sig
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.1
    • /
    • pp.21-28
    • /
    • 2000
  • Although commercial PIV systems have been widely used for the non-intrusive velocity field measurement of fluid flows, they are still under development and have considerable room for improvement. In this study, a single-frame double-exposure PIV system using a high-resolution CCD camera was developed. A pulsed Nd:Yag laser and high-resolution CCD camera were synchronized by a home-made control circuit. In order to resolve the directional ambiguity problem encountered in the single-frame PIV technique, the second particle image was genuinely shifted in the CCD sensor array during the time interval dt. The velocity vector field was determined by calculating the displacement vector at each interrogation window using cross-correlation with 50% overlapping. In order to check the effect of spatial resolution of CCD camera on the accuracy of PIV velocity field measurement, the developed PIV system with three different resolution modes of the CCD camera (512 ${\times}$ 512, lK ${\times}$ IK, 2K ${\times}$ 2K) was applied to a turbulent flow which simulate the Zn plating process of a steel strip. The experimental model consists of a snout and a moving belt. Aluminum flakes about $1{\mu}m$ diameter were used as scattering particles for the liquid flow in the zinc pot and the gas flow above the zinc surface was seeded with atomized olive oil with an average diameter of 1-$3{\mu}m$. Velocity field measurements were carried out at the strip speed $V_s$=1.0 m/s. The 2K ${\times}$ 2K high-resolution PIV technique was significantly superior compared to the smaller pixel resolution PIV system. For the cases of 512 ${\times}$ 512 and 1K ${\times}$ 1K pixel resolution PIV system, it was difficult to get accurate flow structure of viscous flow near the wall and small vortex structure in the region of large velocity gradient.

Phosphating and Electrodeposition Properties of Zinc Based Alloy Plating by Dry Process (건식공정에 의해 제작된 아연계 합금도금 강판의 인산염처리 및 전착도장 특성)

  • Lee, Gyeong-Hwang;Park, Jong-Won;Na, Hyeon-Ju;Gwak, Yeong-Jin;Kim, Tae-Yeop;Yun, Seung-Jin
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2012.05a
    • /
    • pp.266-267
    • /
    • 2012
  • 아연계 합금도금강판은 내식성이 향상되는 반면 아연 이외의 원소 성분에 의해 고온다습에서 변색되기 쉽기 때문에 이를 억제하기 위한 후처리 기술이 필요하다. 또한, 아연계 합금도금 강판이 자동차 부품으로 적용되기 위해서는 변색 억제를 위해 처리한 후처리제가 쉽게 제거되어 인산염처리 공정에서 도금 표면에 인산염결정이 용이하게 형성되어야 한다. 본 연구에서는 건식공정으로 제작된 아연계 합금도금 강판에 우레탄계 알칼리 후처리제를 도포하고, 고온다습 환경에서의 변색 억제 특성과 적정 부착량에서의 인산염처리 및 전착도장 특성에 대해 평가하였다. 두 형태의 후처리제는 건식 아연계 합금도금 강판에 도포 직후 표면에 간섭색을 나타내었으며, 첨가제를 통해 간섭색 제어가 가능하였다. 또한, 두 형태의 후처리제 모두가 고온다습 환경에서 무처리 강판에 비교하여 월등히 우수한 변색 억제 효과를 보였으며, 인산염처리 및 전착도장이 양호하게 얻어지는 것을 알 수 있었다.

  • PDF

Corrosion Analysis of Materials by High Temperature and Zn Fume (고온 및 Zn Fume에 의한 소재들의 부식성 분석)

  • Baek, Min Sook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.5
    • /
    • pp.551-556
    • /
    • 2018
  • The material normally used in hot dip galvanizing facilities is SM45C (carbon steel for mechanical structure, KS standard), mainly because of its price. During this process, the oxidation of the plating facility occurs due to the heat of the Zn fumes coming from the molten zinc. Since the cycle time of the current facilities is 6 months, much time and money are wasted. In this study, the corrosive properties of various materials (Inconel625, STS304, SM45C) were investigated by oxidation in a high temperature and Zn fumes environment. The possibility of applying the hot-dip galvanizing equipment was investigated for each material. The Zn fumes were generated by directly bubbling Ar gas into Zn molten metal in a 650 degree furnace. High-temperature, Zn fumes corrosion was conducted for 30 days. The sample was removed after 30 days and the oxidation of the surface was confirmed with EDS and SEM, and the corrosion properties were examined using potentiodynamic polarization tests.