• Title/Summary/Keyword: Zinc Finger

Search Result 183, Processing Time 0.025 seconds

Molecular Cloning, Characterization and Expression Analysis of an ILF2 Homologue from Tetraodon nigroviridis

  • Wang, Hui-Ju;Shao, Jian-Zhong;Xiang, Li-Xin;Shen, Jia
    • BMB Reports
    • /
    • v.39 no.6
    • /
    • pp.686-695
    • /
    • 2006
  • Interleukin-2 enhancer binding factor 2 (ILF2) was reported to regulate transcription of interleukin-2 (IL-2), a central cytokine in the regulation of T-cell responses. This property of ILF2 was well characterized in human and mammals, but little is known in bony fish. In this paper, an ILF2 homologue was cloned and well characterized from Tetraodon nigrovirid is for the further investigation of the function of ILF2 in bony fish. The full-length Tetraodon ILF2 cDNA was 1380 bp in size and contained an open reading frame (ORF) of 1164 bp that translates into a 387 amino-acid peptide with a molecular weight of 42.9 kDa, a 5' untranslated region (UTR) of 57 bp, and a 3' UTR of 159 bp containing a poly A tail. The deduced peptide of Tetraodon ILF2 shared an overall identity of 58%~93% with other known ILF2 sequences, and contained two N-glycosylation sites, two N-myristoylation sites, one RGD cell attachment sequence, six protein kinase C phosphorylation sites, one amino-terminal RGG-rich single-stranded RNA-binding domain, and a DZF zinc-finger nucleic acid binding domain, most of which were highly conserved through species compared. Constitutive expression of Tetraodon ILF2 was observed in all tissues examined, including gill, gut, head kidney, spleen, liver, brain and heart. The highest expression was detected in heart, followed by liver, head kidney and brain. Stimulation with LPS did not significantly alter the expression of Tetraodon ILF2. Gene organization analysis showed that the Tetraodon ILF2 gene have fifteen exons, one more than other known ILF2 genes in human and mouse. Genes up- and down-stream from the Tetraodon ILF2 were Rpa12, Peroxin-11b, Smad4, Snapap and Txnip homologue, which were different from that in human and mouse.

Identification of Egr1 Direct Target Genes in the Uterus by In Silico Analyses with Expression Profiles from mRNA Microarray Data

  • Seo, Bong-Jong;Son, Ji Won;Kim, Hye-Ryun;Hong, Seok-Ho;Song, Haengseok
    • Development and Reproduction
    • /
    • v.18 no.1
    • /
    • pp.1-11
    • /
    • 2014
  • Early growth response 1 (Egr1) is a zinc-finger transcription factor to direct second-wave gene expression leading to cell growth, differentiation and/or apoptosis. While it is well-known that Egr1 controls transcription of an array of targets in various cell types, downstream target gene(s) whose transcription is regulated by Egr1 in the uterus has not been identified yet. Thus, we have tried to identify a list of potential target genes of Egr1 in the uterus by performing multi-step in silico promoter analyses. Analyses of mRNA microarray data provided a cohort of genes (102 genes) which were differentially expressed (DEGs) in the uterus between Egr1(+/+) and Egr1(-/-) mice. In mice, the frequency of putative EGR1 binding sites (EBS) in the promoter of DEGs is significantly higher than that of randomly selected non-DEGs, although it is not correlated with expression levels of DEGs. Furthermore, EBS are considerably enriched within -500 bp of DEG's promoters. Comparative analyses for EBS of DEGs with the promoters of other species provided power to distinguish DEGs with higher probability as EGR1 direct target genes. Eleven EBS in the promoters of 9 genes among analyzed DEGs are conserved between various species including human. In conclusion, this study provides evidence that analyses of mRNA expression profiles followed by two-step in silico analyses could provide a list of putative Egr1 direct target genes in the uterus where any known direct target genes are yet reported for further functional studies.

Identification of Fruit-specific cDNAs in a Ripened Inodorus Melon Using Differential Screening and the Characterization of on Abscisic Acid Responsive Gene Homologue

  • Hong, Se-Ho;Kim, In-Jung;Chung, Won-Il
    • Journal of Plant Biotechnology
    • /
    • v.4 no.1
    • /
    • pp.7-15
    • /
    • 2002
  • Eight cDNAs corresponding to fruit-specific genes were isolated from ripened melon through differential screening. Sequence comparison indicated that six of these cDNAs encoded proteins were previously characterized into aminocyclopropane-1-carboxylate (ACC) oxidase, abscisic acid, stress and ripening inducible (ASR) gene, RINC-H2 zinc finger protein, pyruvate decarboxylase, or polyubiquitin. RFS2 and RFS5 were the same clone encoding polyubiquitin. The other cDNAs showed no significant homology with known protein sequences. The ASR homologue (Asr1) gene was further characterized on the cDNA and genomic structure. The deduced amino acid sequence had similar characteristics to other plant ASR. The Asr1 genomic DNA consisted of 2 exons and 1 intron, which is similar to the structure of other plants ASR genes. The promoter region of the Asr1 gene contained several putative functional cis-elements such as an abscisic acid responsive element (ABRE), an ethylene responsive element (ERE), a C-box or DPBf-1 and 2, Myb binding sites, a low temperature responsive element (LTRE) and a metal responsive element (MRE). The findings imply that these elements may play important roles in the response to plant hormones and environmental stresses in the process of fruit development. The results of this study suggest that the expressions of fruit specific and ripening-related cDNAs are closely associated with the stress response.

Genotoxicity and Identification of Differentially Expressed Genes of Formaldehyde in human Jurkat Cells

  • Kim, Youn-Jung;Kim, Mi-Soon;Ryu, Jae-Chun
    • Molecular & Cellular Toxicology
    • /
    • v.1 no.4
    • /
    • pp.230-236
    • /
    • 2005
  • Formaldehyde is a common environmental contaminant found in tobacco smoke, paint, garments, diesel and exhaust, and medical and industrial products. Formaldehyde has been considered to be potentially carcinogenic, making it a subject of major environmental concern. However, only a little information on the mechanism of immunological sensitization and asthma by this compound has been known. So, we performed with Jurkat cell line, a human T lymphocyte, to assess the induction of DNA damage and to identify the DEGs related to immune response or toxicity by formaldehyde. In this study, we investigated the induction of DNA single strand breaks by formaldehyde using single cell gel electrophoresis assay (comet assay). And we compared gene expression between control and formaldehyde treatment to identify genes that are specifically or predominantly expressed by employing annealing control primer (ACP)-based $GeneFishing^{TM}$ method. The cytotoxicity ($IC_{30}$) of formaldehyde was determined above the 0.65 mM in Jurkat cell in 48 h treatment. Based on the $IC_{30}$ value from cytotoxicity test, we performed the comet assay in this concentration. From these results, 0.65 mM of formaldehyde was not revealed significant DNA damages in the absence of S-9 metabolic activation system. And the one differentially expressed gene (DEG) of formaldehyde was identified to zinc finger protein 292 using $GeneFishing^{TM}$ method. Through further investigation, we will identify more meaningful and useful DEGs on formaldehyde, and then can get the information on the associated mechanism and pathway with immune response or other toxicity by formaldehyde exposure.

Expression Pattern of Early Growth Response Gene 1 during Olive Flounder (Paralichthys olivaceus) Embryonic Development

  • Yang, Hyun;Lee, Jeong-Ho;Noh, Jae Koo;Kim, Hyun Chul;Park, Choul-Ji;Park, Jong-Won;Kim, Kyung-Kil
    • Development and Reproduction
    • /
    • v.18 no.4
    • /
    • pp.233-240
    • /
    • 2014
  • The early growth response protein 1 (Egr-1) is a widely reported zinc finger protein and a well known transcription factor encoded by the Egr-1 gene, which plays key roles in many aspects of vertebrate embryogenesis and in adult vertebrates. The Egr-1 expression is important in the formation of the gill vascular system in flounders, which develops during the post-hatching phase and is essential for survival during the juvenile period. However, the complete details of Egr-1 expression during embryo development in olive flounder are not available. We assessed the expression patterns of Egr-1 during the early development of olive flounders by using reverse transcription polymerase chain reaction (RT-PCR) analysis. Microscopic observations showed that gill filament formation corresponded with the Egr-1 expression. Thus, we showed that Egr-1 plays a vital role in angiogenesis in the gill filaments during embryogenesis. Further, Egr-1 expression was found to be strong at 5 days after hatching (DAH), in the development of the gill vascular system, and this strong expression level was maintained throughout all the development stages. Our findings have important implications with respect to the biological role of Egr-1 and evolution of the first respiratory blood vessels in the gills of olive flounder. Further studies are required to elucidate the Egr-1-mediated stress response and to decipher the functional role of Egr-1 in developmental stages.

Examination of specific binding activity of aptamer RNAs to the HIV-NC by using a cell-based in vivo assay for protein-RNA interaction

  • Jeong, Yu-Young;Kim, Seon-Hee;Jang, Soo-In;You, Ji-Chang
    • BMB Reports
    • /
    • v.41 no.7
    • /
    • pp.511-515
    • /
    • 2008
  • The nucleocapsid (NC) protein of the Human Immunodeficiency Virus-1 plays a key role in viral genomic packaging by specifically recognizing the Psi($\Psi$) RNA sequence within the HIV-1 genome RNA. Recently, a novel cell-based assay was developed to probe the specific interactions in vivo between the NC and $\Psi$-RNA using E.coli cells (J. Virol. 81: 6151-55, 2007). In order to examine the extendibility of this cell-based assay to RNAs other than $\Psi$-RNA, this study tested the RNA aptamers isolated in vitro using the SELEX method, but whose specific binding ability to NC in a living cellular environment has not been established. The results demonstrate for the first time that each of those aptamer RNAs can bind specifically to NC in a NC zinc finger motif dependent manner within the cell. This confirms that the cell-based assay developed for NC-$\Psi$interaction can be further extended and applied to NC-binding RNAs other than $\Psi$-RNA.

CTCF Regulates Otic Neurogenesis via Histone Modification in the Neurog1 Locus

  • Shin, Jeong-Oh;Lee, Jong-Joo;Kim, Mikyoung;Chung, Youn Wook;Min, Hyehyun;Kim, Jae-Yoon;Kim, Hyoung-Pyo;Bok, Jinwoong
    • Molecules and Cells
    • /
    • v.41 no.7
    • /
    • pp.695-702
    • /
    • 2018
  • The inner ear is a complex sensory organ responsible for hearing and balance. Formation of the inner ear is dependent on tight regulation of spatial and temporal expression of genes that direct a series of developmental processes. Recently, epigenetic regulation has emerged as a crucial regulator of the development of various organs. However, what roles higher-order chromatin organization and its regulator molecules play in inner ear development are unclear. CCCTC-binding factor (CTCF) is a highly conserved 11-zinc finger protein that regulates the three-dimensional architecture of chromatin, and is involved in various gene regulation processes. To delineate the role of CTCF in inner ear development, the present study investigated inner ear-specific Ctcf knockout mouse embryos (Pax2-Cre; $Ctcf^{fl/fl}$). The loss of Ctcf resulted in multiple defects of inner ear development and severely compromised otic neurogenesis, which was partly due to a loss of Neurog1 expression. Furthermore, reduced Neurog1 gene expression by CTCF knockdown was found to be associated with changes in histone modification at the gene's promoter, as well as its upstream enhancer. The results of the present study demonstrate that CTCF plays an essential role in otic neurogenesis by modulating histone modification in the Neurog1 locus.

Molecular Sexing and Species Identification of the Processed Meat and Sausages of Horse, Cattle and Pig

  • Kim, Yoo-Kyung;Kang, Yong-Jun;Kang, Geun-Ho;Seong, Pil-Nam;Kim, Jin-Hyoung;Park, Beom-Young;Cho, Sang-Rae;Jeong, Dong Kee;Oh, Hong-Shik;Cho, In-Cheol;Han, Sang-Hyun
    • Journal of Embryo Transfer
    • /
    • v.31 no.1
    • /
    • pp.61-64
    • /
    • 2016
  • We developed a polymerase chain reaction (PCR)-based molecular method for sexing and identification using sexual dimorphism between the Zinc Finger-X and -Y (ZFX-ZFY) gene and polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) for mitochondrial DNA (mtDNA) cytochrome B (CYTB) gene in meat pieces and commercial sausages from animals of different origins. Sexual dimorphism based on the presence or absence of SINE-like sequence between ZFX and ZFY genes showed distinguishable band patterns between male and female DNA samples and were easily detected by PCR analyses. Male DNA had two PCR products appearing as distinct two bands (ZFX and ZFY), and female DNA had a single band (ZFX). Molecular identification was carried out using PCR-RFLP of CYTB gene, and showed clear species classification results. The results yielded identical information on the sexes and the species of the meat samples collected from providers without any records. The analyses for DNA isolated from commercial sausage showed that pig was the major source but several sausages originated from chicken and Atlantic cod. Applying this PCR-based molecular method was useful and yielded clear sex information and identified the species of various tissue samples originating from livestock.

Effects of Recombinant Human Erythropoietin Treatment in Male Cynomolgus (Macaca fascicularis) Monkeys (II): Gene Expression Profiling in Spleen (게잡이 원숭이에서 Recombinant Human Erythropoietin의 4주간 투여 후 비장 유전자 발현 연구)

  • Yoon, Seok-Joo;Hwang, Ji-Yoon;Lim, Jung-Sun;Jeong, Sun-Young;Kim, Yong-Bum;Kim, Dal-Hyun;Kwon, Myung-Sang;Han, Sang-Seop;Kim, Choong-Yong
    • Toxicological Research
    • /
    • v.21 no.3
    • /
    • pp.209-218
    • /
    • 2005
  • We investigated effects of recombinant human erythropoietin (rHuEPO) on profiles of mRNA transcripts in 6 male cynomolgus (M. fascicularis) monkey's spleen for 4 weeks. Six monkeys, composed of control and treatment group (Control : M1, M2, M3: Treatment : M4, M5, M6) were intravenously administered 3 times per week without or with a dose of rHuEPO 2730 IU/0.1 ml/kg. After 4 weeks rHuEPO treatment, spleen was removed for RNA isolation. Splenic gene expression was assessed using Affymetrix U133A 2.0 arrays containing 18,400 transcripts and variants, including 14,500 well-characterized human genes. Gene expression pattern was very different between individuals even in same treatment. In rHuEPO treated groups showed number of genes were up- or down-regulated (M4: 79: M5: 48; M6: 73 genes). Six genes (epidermal growth factor receptor, calgranulin A, estrogen receptor binding site associated antigen, matrix metalloproteinase 19, zinc finger and BTB domain containing 16, progestin and adipoQ receptor) were commonly expressed in rHuEPO treated group. The different individual response could be major considering factor in monkey experiment. Further study is needed to clarify the different individual response to rHuEPO in molecular level. This study will be valuable in the fundamental understanding and validation of molecular toxicology for bio-generic drugs including rHuEPO in cynomolgus monkey.

A case of Mowat-Wilson syndrome with developmental delays and Hirschsprung's disease

  • Lee, Darae;Kim, Ja Hye;Cho, Ja Hyang;Oh, Moon-Yun;Lee, Beom Hee;Kim, Gu-Hwan;Choi, Jin-Ho;Yoo, Han-Wook
    • Journal of Genetic Medicine
    • /
    • v.11 no.2
    • /
    • pp.79-82
    • /
    • 2014
  • Mowat-Wilson syndrome is an extremely rare genetic disease that is characterized by intellectual disability, facial dysmorphism, Hirschsprung's disease, and other congenital anomalies. This disorder is caused by heterozygous mutations or deletions in the zinc finger E-box-binding homeobox-2 gene (ZEB2). Thus far, approximately 200 cases of Mowat-Wilson syndrome have been reported worldwide. In Korea, only one case with a 2q22 deletion, which also affects ZEB2, has been previously reported. Here, we describe a patient with Mowat-Wilson syndrome who presented with developmental delays, typical facial dysmorphism, and Hirschsprung's disease. Molecular analysis of ZEB2 identified a novel heterozygous mutation at c.190dup ($p.S64Kfs^*6$). To our knowledge, this is the second report of a Korean patient with Mowat-Wilson syndrome that has been confirmed genetically.