• 제목/요약/키워드: Zigzag model

검색결과 90건 처리시간 0.051초

Zigzag 밀링가공에서 공구경로 최소화를 위한 가공방향 결정방법 (Determination of Cutting Direction for Tool Path Minimization in Zigzag Milling Operation)

  • 김병극;박준영
    • 대한산업공학회지
    • /
    • 제27권1호
    • /
    • pp.69-88
    • /
    • 2001
  • In the zigzag milling operation, an important issue is to design a machining strategy which minimizes the cutting time. An important variable for minimization of cutting time is the tool path length. The tool path is divided into cutting path and non-cutting path. Cutting path can be subdivided into tool path segment and step-over, and non-cutting path can be regarded as the tool retraction. We propose a new method to determine the cutting direction which minimizes the length of tool path in a convex or concave polygonal shape including islands. For the minimization of tool path length, we consider two factors such as step-over and tool retraction. Step-over is defined as the tool path length which is parallel to the boundary edges for machining area and the tool retraction is a non-cutting path for machining any remaining regions. In the determination of cutting direction, we propose a mathematical model and an algorithm which minimizes tool retraction length in complex shapes. With the proposed methods, we can generate a tool path for the minimization of cutting time in a convex or concave polygonal shapes including islands.

  • PDF

횡경사상태 선박의 조종성능변화에 관한 실험적 연구 (An Experimental Study on the Manoeuvrability of a Ship in Heeled Condition)

  • 윤근항;여동진
    • 대한조선학회논문집
    • /
    • 제56권3호
    • /
    • pp.273-280
    • /
    • 2019
  • Predicting ship manoeuvrability is attracting widespread interest in the field of analyzing maritime accident to simulate a highly accurate track of a ship in abnormal accident situations. This study investigated the manoeuvrability of a ship in abnormally heeled condition. Free Running Model Tests (FRMT) with 1/65.83 scaled KCS (KRISO container ship) were conducted in three heeled conditions; $35^{\circ}$ turning circle tests and 20/20 zigzag manoeuvring tests were conducted in $0^{\circ}$, $-10^{\circ}$, and $-20^{\circ}$ conditions. The test results showed that the heeled to port condition significantly affected starboard turning and zigzag characteristics; the tactical diameters in the turning circle tests decreased, and the first overshoot angles in the zigzag tests increased when the ship was in the larger heeled condition. These results indicate that the roll angle of the ship considerably affects yaw rate and speed decrease of the ship. The turning and zigzag indices from trajectory and navigation data in the study were provided for benchmark data sets.

Generalized characteristic polynomials of semi-zigzag product of a graph and circulant graphs

  • Lee, Jae-Un;Kim, Dong-Seok
    • Journal of the Korean Data and Information Science Society
    • /
    • 제19권4호
    • /
    • pp.1289-1295
    • /
    • 2008
  • We find the generalized characteristic polynomial of graphs G($F_{1},F_{2},{\cdots},F_{v}$) the semi-zigzag product of G and ${\{F_{i}\}^{v}_{i=1}$ obtained from G by replacing vertices by circulant graphs of vertices and joining $F_{i}$'s along the edges of G. These graphs contain discrete tori and are key examples in the study of network model.

  • PDF

Stability and vibration analysis of composite plates using spline finite strips with higher-order shear deformation

  • Akhras, G.;Li, W.
    • Structural Engineering and Mechanics
    • /
    • 제27권1호
    • /
    • pp.1-16
    • /
    • 2007
  • In the present study, a spline finite strip with higher-order shear deformation is formulated for the stability and free vibration analysis of composite plates. The analysis is conducted based on Reddy's third-order shear deformation theory, Touratier's "Sine" model, Afaq's exponential model and Cho's higher-order zigzag laminate theory. Consequently, the shear correction coefficients are not required in the analysis, and an improved accuracy for thick laminates is achieved. The numerical results, based on different shear deformation theories, are presented in comparison with the three-dimensional elasticity solutions. The effects of length-to-thickness ratio, fibre orientation, and boundary conditions on the critical buckling loads and natural frequencies are investigated through numerical examples.

해상 환경에서의 업링크 데이터의 오류성능 개선을 위한 CZZ 부호화 (Concatenated Zigzag(CZZ) Code for Improving Error Performance of Uplink Data in Marine Environment)

  • 윤정국
    • 한국군사과학기술학회지
    • /
    • 제14권4호
    • /
    • pp.648-654
    • /
    • 2011
  • We can model marine uplink channel environment as time-correlated rician fading channel that has direct path and time varying reflected path. In this channel, error performance of uncoded system can be seriously degraded by multipath inteference. In this paper, we propose Concatenated Zigzag(CZZ) coded binary FSK signaling with noncoherent detection to improve error performance of uplink data in marine environment. CZZ code is a kind of channel coding scheme that is fast decodable as well as fast encodable. We have confirmed error performance of uplink data in marine environment can be improved dramatically through applying CZZ code.

Effect of power law index for vibration of armchair and zigzag single walled carbon nanotubes

  • Khadimallah, Mohamed Amine;Hussain, Muzamal
    • Steel and Composite Structures
    • /
    • 제37권5호
    • /
    • pp.621-632
    • /
    • 2020
  • This research deals with the study of vibrational behavior of armchair and zigzag single-walled carbon nanotubes invoking extended Love shell theory. The effects of different physical and material parameters on the fundamental frequencies are investigated. By using volume fraction for power law index, the fundamental natural frequency spectra for two forms of single-walled carbon nanotubes are calculated. The influence of frequencies against length-to-diameter ratios with varying power law index are investigated in detail for these tubes. To discretize the governing equation in eigen-value form, wave propagation approach is developed. Complex exponential functions have been used and the axial model depends on boundary condition that has been described at the edges of carbon nanotubes to calculate the axial modal dependence. Computer software MATLAB is utilized for the frequencies of single-walled carbon nanotubes and current results shows a good stability with comparison of other studies.

Studying the influences of mono-vacancy defect and strain rate on the unusual tensile behavior of phosphorene NTs

  • Hooman Esfandyari;AliReza Setoodeh;Hamed Farahmand;Hamed Badjian;Greg Wheatley
    • Advances in nano research
    • /
    • 제15권1호
    • /
    • pp.59-65
    • /
    • 2023
  • In this present article, the mechanical behavior of single-walled black phosphorene nanotubes (SW-αPNTs) is simulated using molecular dynamics (MD). The proposed model is subjected to the axial loading and the effects of morphological parameters, such as the mono-vacancy defect and strain rate on the tensile behavior of the zigzag and armchair SW-αPNTs are studied as a pioneering work. In order to assess the accuracy of the MD simulations, the stress-strain response of the current MD model is successfully verified with the efficient quantum mechanical approach of the density functional theory (DFT). Along with reproducing the DFT results, the accurate MD simulations successfully anticipate a significant variation in the stress-strain curve of the zigzag SW-αPNTs, namely the knick point. Predicting such mechanical behavior of SW-αPNTs may be an important design factor for lithium-ion batteries, supercapacitors, and energy storage devices. The simulations show that the ultimate stress is increased by increasing the diameter of the pristine SW-αPNTs. The trend is identical for the ultimate strain and stress-strain slope as the diameter of the pristine zigzag SW-αPNTs enlarges. The obtained results denote that by increasing the strain rate, the ultimate stress/ultimate strain are respectively increased/declined. The stress-strain slope keeps increasing as the strain rate grows. It is worth noting that the existence of mono-atomic vacancy defects in the (12,0) zigzag and (0,10) armchair SW-αPNT structures leads to a drop in the tensile strength by amounts of 11.1% and 12.5%, respectively. Also, the ultimate strain is considerably altered by mono-atomic vacancy defects.

자유항주모형시험을 이용한 KCS 선형의 축척비별 조종성능에 관한 연구 (An Experimental Study on the Manoeuvrability of KCS with Different Scale Ratios by Free Running Model Test)

  • 윤근항;최후재;김동진
    • 대한조선학회논문집
    • /
    • 제58권6호
    • /
    • pp.415-423
    • /
    • 2021
  • There have been many experimental studies on the manoeuvrability of KRISO Container Ship (KCS). However, the scale ratio of the model ship and the test procedure for each institute are slightly different, so direct comparison for the data is technically difficult to perform. This paper presents the manoeuvrability of the ship with different scale ratios: 1/65.8, 1/42.0, and 1/31.6 in model scale. KRISO conducted Free Running Model Tests (FRMT): 35° turning circle tests and 20/20(10/10) zigzag manoeuvring tests. The test results indicated that advance and tactical diameter in turning circle tests were similar, and overshoot angles in two zigzag manoeuvring tests increased as the model ship size increased. In addition, a basic concept for the FRMT method with an auxiliary X-thrust device was proposed so that the scale effect could be considered in model ship tests.

Spline finite strip method incorporating different plate theories for thick piezoelectric composite plates

  • Akhras, G.;Li, W.C.
    • Smart Structures and Systems
    • /
    • 제5권5호
    • /
    • pp.531-546
    • /
    • 2009
  • In the present analysis, the spline finite strip with higher-order shear deformation is formulated for the static analysis of piezoelectric composite plates. The proposed method incorporates Reddy's third-order shear deformation theory, Touratier's "Sine" model, Afaq's exponential model, Cho's higher-order zigzag laminate theory, as well as the classic plate theory and the first-order plate theory. Thus, the analysis can be conducted based on any of the above-mentioned theories. The selection of a specific method is done by simply changing a few terms in a 2 by 2 square matrix and the results, obtained according to different plate theories, can be compared to each other. Numerical examples are presented for piezoelectric composite plates subjected to mechanical loading. The results based on different shear deformation theories are compared with the three-dimensional solutions. The behaviours of piezoelectric composite plates with different length-to-thickness ratios, fibre orientations, and boundary conditions are also investigated in these examples.

Two- and Three-dimensional Analysis on the Bubble Flow Characteristics Using CPFD Simulation

  • Lim, Jong Hun;Lee, Dong Hyun
    • Korean Chemical Engineering Research
    • /
    • 제55권5호
    • /
    • pp.698-703
    • /
    • 2017
  • Bubble flow characteristics in fluidized beds were analyzed by CPFD simulation. A fluidized bed, which had the size of $0.3m-ID{\times}2.4m-high$, was modeled by commercial CPFD $Barracuda^{(R)}$. Properties of bed material were $d_p=150{\mu}m$, ${\rho}_p=2,330kg/m^3$, and $U_{mf}=0.02m/s$. Gas was uniformly distributed and the range of superficial gas velocity was 0.07 to 0.16 m/s. Two other geometries were modeled. The first was a three-dimensional model, and the other was a two-dimensional model of $0.01m{\times}0.3m{\times}2.4m$. Bubble size and rising velocity were simulated by axial and radial position according to superficial gas velocity. In the case of three-dimensional model, simulated bubble rising velocity was different from correlations, because there was zigzag motion in bubble flow, and bubble detection was duplicated. To exclude zigzag motion of bubble flow, bubble rising velocity was simulated in the two-dimensional model and compared to the result from three-dimensional model.