• 제목/요약/키워드: Ziegler-Nichols method

검색결과 91건 처리시간 0.024초

A Model reference adaptive speed control of marine diesel engine by fusion of PID controller and fuzzy controller

  • Yoo, Heui-Han
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제30권7호
    • /
    • pp.791-799
    • /
    • 2006
  • The aim of this paper is to design an adaptive speed control system of a marine diesel engine by fusion of hard computing based proportional integral derivative (PID) control and soft computing based fuzzy control methods. The model of a marine diesel engine is considered as a typical non oscillatory second order system. When its model and the actual marine diesel engine ate not matched, it is hard to control the speed of the marine diesel engine. Therefore, this paper proposes two methods in order to obtain the speed control characteristics of a marine diesel engine. One is an efficient method to determine the PID control parameters of the nominal model of a marine diesel engine. Second is a reference adaptive speed control method that uses a fuzzy controller and derivative operator for tracking the nominal model of the marine diesel engine. It was found that the proposed PID parameters adjustment method is better than the Ziegler & Nichols' method, and that a model reference adaptive control is superior to using only PID controller. The improved control method proposed here, could be applied to other systems when a model of a system does not match the actual system.

전력설비시스템을 위한 퍼지 평가함수와 신경회로망을 사용한 PID제어기의 자동동조 (An Auto-tuning of PID Controller using Fuzzy Performance Measure and Neural Network for Equipment System)

  • 이수흠;박현태;이내일
    • 조명전기설비학회논문지
    • /
    • 제13권2호
    • /
    • pp.63-70
    • /
    • 1999
  • 본 논문은 여러 설비시스템의 프로세스 제어에 사용되는 PID제어기의 최적 자동동조에 관한 새로운 방법을 제안하고자 한다. 이 방법은 먼저. 제어대상의 계단응답으로부터 모델링 된 1차 지연계를 Pad 근사화하고, Ziefler-Nichols의 한계감도법으로 초기값을 정한 후, 최대 오버슈트, 감쇠비, 상승시간, 정정시간에 대한 퍼지 평가함수를 초대로 하는 최적화되 PID 계수를 목표치로 하여 신경회로망의 역전파 알고리즘을 통해 충분히 반복, 학습시켜 새로운 K, L, T값을 입력하였을 때 근사적으로 최적화된 PID 계수를 구함으로써 퍼지추론에 의한 제어 규칙이 불필요하여 자동 동조시간이 짧다는 장점을 가지고 있다.

  • PDF

Web Guide Process in Cold Rolling Mill : Modeling and PID Controller

  • Ahn, Byoung-Joon;Park, Ju-Yong;Chang, Yu-Shin;Lee, Man-Hyung
    • Journal of Mechanical Science and Technology
    • /
    • 제18권7호
    • /
    • pp.1074-1085
    • /
    • 2004
  • There are many intermediate web guides in cold rolling mills process such as CRM (cold rolling mill), CGL (continuous galvanizing line), EGL (electrical galvanizing line) and so on. The main functions of the web guides are to adjust the center line of the web (strip) to the center line of the steel process. So they are called CPC (center position control). Rapid process speed cause large deviation between the center position of the strip and the process line. Too much deviation is not desirable. So the difference between the center position of the strip and the process line should be compensated. In general, the center position control of the web is obtained by the hydraulic driver and electrical controller. In this paper, we propose modelling and several controller designs for web-guide systems. We model the web and guide by using geometrical relations of the guide ignored the mass and stiffness of the web. To control the systems, we propose PID controllers with their gains tuned by the Ziegler-Nichols method, the H$\_$$\infty$/ controller model-matching method, and the coefficient diagram method (CDM). CDM is modified for high order systems. The results are verified by computer simulations.

Robust Controls of a Galvanometer : A Feasibility Study

  • Park, Myoung-Soo;Kim, Young-Chol;Lee, Jae-Won
    • Transactions on Control, Automation and Systems Engineering
    • /
    • 제1권2호
    • /
    • pp.94-98
    • /
    • 1999
  • Optical scanning systems use glavanometers to point the laser beam to the desired position on the workpiece. The angular speed of a galvanometer is typically controlled using Proportional+Integral+Derivative(PID) control algorithms. However, natural variations in the dynamics of different galvanometers due to manufacturing, aging, and environmental factors(i.e., process uncertainty) impose a hard limit on the bandwidth of the galvanometer control system. In general, the control bandwidth translates directly into efficiency of the system response. Since the optical scanning system must have rapid response, the higher control bandwidth is required. Auto-tuning PID algorithms have been accepted in this area since they could overcome some of the problems related to process uncertainty. However, when the galvanometer is attached to a larger mechanical system, the combined dynamics often exhibit resonances. It is well understood that PId algorithms may not have the capacity to increase the control bandwidth in the face of such resonances. This paper compares the achieable performance and robustness of a galvanometer control system using a PID controller tuned by the Ziegler-Nichols method and a controller designed by the Quantitative Feedback Theory(QFT) method. The results clearly indicate that-in contrast to PID designs-QFT can deliver a single, fixed controller which will supply high bandwidth design even when the dynamics is uncertain and includes mechanical resonances.

  • PDF

Oven Temperature Control by Integral - Cycle Binary Rate Modulation Technique

  • Tipsuwanporn, V.;Piyarat, W.;Chochai, N.;Jamjan, K.;Paraken, Y.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1999년도 제14차 학술회의논문집
    • /
    • pp.278-280
    • /
    • 1999
  • This paper proposes controlling of temperature in an oven by using 4 bits Integral - Cycle Binary Rate Modulation (IBRM) method and ac line with frequency 50 Hz. Microcontroller MCS-51 controls IBRM according to Proportional Integral controller (PI) function. Discrete signals are used in the system modeled by using Ziegler Nichols principle for analyzing the stability before designing the system. This procedure makes it easy to investigate system response. The system is implemented by 4 bits digital circuit which gives 320 patterns of ac signal fur controlling the generation of energy for 3,000 watts thermal coil every 20 ms of each cycle. We divide scan time (Ts$\sub$n/) in to 20 intervals, 1 ms interval is selected to generate 16 patterns IBRM. Because of this method gives the ripple lower than 2% it generates less noise fur system. Moreover, we can consider whole system from the time model of control procedure and IBRM algorithm at 40-200$^{\circ}C$ with ${\pm}$ 1$^{\circ}C$ error in the 1 cubic meter oven.

  • PDF

Automatic PID Controller Parameter Analyzer

  • Pannil, Pittaya;Julsereewong, Prasit;Ukakimaparn, Prapart;Tirasesth, Kitti
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1999년도 제14차 학술회의논문집
    • /
    • pp.288-291
    • /
    • 1999
  • The PID (Proportional-Integral-Derivative) controller is widely used in the industries for more than fifty years with the well known Ziegler-Nichols tuning method and others varieties. However, most of the PID controller being used in the real practice still require trial and error adjustment for each process after the tuning method is done, which is consuming of time and needs the operator experiences to obtain the best results for the controller parameter. In order to reduce the inconvenience in the controller tuning, this paper presents a design of an automatic PID controller parameter analyzer being used as a support instrument in the industrial process control. This analyzer is designed based on the tuning formula of Dahlin to synthesize the PID controller parameter. Using this analyzer, the time to be spent in the trial and error procedures and its complexity can be neglected. Experimental results using PID controller parameter synthesized from this analyzer to the liquid level control plant model and the fluid flow control plant model show that the responses of the controlled systems can be efficiently controlled without any difficulty in mathemathical computation.

  • PDF

Tuning of a PID Controller Using Soft Computing Methodologies Applied to Basis Weight Control in Paper Machine

  • Nagaraj, Balakrishnan;Vijayakumar, Ponnusamy
    • 펄프종이기술
    • /
    • 제43권3호
    • /
    • pp.1-10
    • /
    • 2011
  • Proportional.Integral.Derivative control schemes continue to provide the simplest and effective solutions to most of the control engineering applications today. However PID controller is poorly tuned in practice with most of the tuning done manually which is difficult and time consuming. This research comes up with a soft computing approach involving Genetic Algorithm, Evolutionary Programming, and Particle Swarm Optimization and Ant colony optimization. The proposed algorithm is used to tune the PID parameters and its performance has been compared with the conventional methods like Ziegler Nichols and Lambda method. The results obtained reflect that use of heuristic algorithm based controller improves the performance of process in terms of time domain specifications, set point tracking, and regulatory changes and also provides an optimum stability. This research addresses comparison of tuning of the PID controller using soft computing techniques on Machine Direction of basics weight control in pulp and paper industry. Compared to other conventional PID tuning methods, the result shows that better performance can be achieved with the soft computing based tuning method. The ability of the designed controller, in terms of tracking set point, is also compared and simulation results are shown.

세포성 면역 알고리즘을 이용한 AGV의 조향 제어기 설계에 관한 연구 (Design of Steering Controller of AGV using Cell Mediate Immune Algorithm)

  • 이영진;이진우;이권순
    • 제어로봇시스템학회논문지
    • /
    • 제7권10호
    • /
    • pp.827-836
    • /
    • 2001
  • The PID controller has been widely applied to the most control systems because of its simple structure and east designing. One of the important points to design the PID control system is to tune the approximate control parameters for the given target system. To find the PID parameters using Ziegler Nichols(ZN) method needs a lot of experience and experiments to ensure the optimal performance. In this paper, CMIA(Cell Mediated Immune Algorithm) controller is proposed to drive the autonomous guided vehicle (AGV) more effectively. The proposed controller is based on specific immune responses of the biological immune system which is the cell mediated immunity. To verify the performance of the proposed CMIA controller, some experiments for the control of steering and speed of that AGV are performed. The tracking error of the AGV is mainly investigated for this purpose. As a result, the capability of realization and reliableness are proved by comparing the response characteristics of the proposed CMIA controllers with those of the conventional PID and NNPID(Neural Network PID) controller.

  • PDF

농용트랙터용 운전자 좌석 진동 시험을 위한 1축 가진 시험기 개발(I) - 1축 가진 시험기 위치 제어를 위한 PID 제어기 설계 - (Development of 1-axis Exciter for a Seat Vibration Test of Agricultural Tractors(I) - Design of PID Controller for Position Control of 1-axis Exciter -)

  • 유지훈;최영균;이규철;김영주;류영선;류관희
    • Journal of Biosystems Engineering
    • /
    • 제34권5호
    • /
    • pp.305-314
    • /
    • 2009
  • The purpose of this paper was to design an effective control system of 1-axis exciter for a seat vibration test of agricultural tractors using MATLAB simulation. The developed simulation model was composed with a hydraulic pump, a hydraulic servo valve, a hydraulic cylinder and load system. Also it was verified by comparing the simulation results with experimental results of actual control system in order to optimize the control performance. And in order to improve its control performance, the designed PID controller in this research was tuned using Ziegler-Nichols 2nd law and zero's moving method of PID controller's transfer function. As the result of these research, the developed position control system was able to control the system's position accurately within 5% errors.

Neural Network Tuning of the 2-DOF PID Controller With a Combined 2-DOF Parameter For a Gas Turbine Generating Plant

  • Kim, Dong-Hwa
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제1권1호
    • /
    • pp.95-103
    • /
    • 2001
  • The purpose of Introducing a combined cycle with gas turbine in power plants is to reduce losses of energy, by effectively using exhaust gases from the gas turbine to produce additional electricity or process. The efficiency of a combined power plant with the gas turbine increases, exceeding 50%, while the efficiency of traditional steam turbine plants is approximately 35% to 40%. Up to the present time, the PID controller has been used to operate this system. However, it is very difficult to achieve an optimal PID gain without any experience, since the gain of the PID controller has to be manually tuned by trial and error procedures. This paper focuses on the neural network tuning of the 2-DOF PID controller with a combined 2-DOF parameter (NN-Tuning 2-DOF PID controller), for optimal control of the Gun-san gas turbine generating plant in Seoul, Korea. In order to attain optimal control, transfer function and operating data from start-up, running, and stop procedures of the Gun-san gas turbine have been acquired and a designed controller has been applied to this system. The results of the NN-Tuning 2-DOF PID are compared with the PID controller and the conventional 2-DOF PID controller tuned by the Ziegler-Nichols method through experimentation. The experimental results of the NN-Tuning 2-DOF PID controller represent a more satisfactory response than those of the previously-mentioned two controllers.

  • PDF