• Title/Summary/Keyword: Zhengzhou

Search Result 304, Processing Time 0.022 seconds

Positive Association Between miR-499A>G and Hepatocellular Carcinoma Risk in a Chinese Population

  • Zou, Hong-Zhi;Zhao, Yan-Qiu
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.3
    • /
    • pp.1769-1772
    • /
    • 2013
  • A case-control study of the association of miR-499A>G rs3746444 with risk of hepatocellular carcinoma (HCC)was conducted. Patients with HCC and healthy control subjects were recruited for genotyping of miR-499A>G using duplex polymerase-chain-reaction with confronting-two-pair primer(PCR-RFLP) analysis. The MiR-499 GG genotype was associated with a decreased risk of HCC as compared with the miR-499 AA genotype (adjusted OR=0.74, 95%CI=0.24-0.96). Similarly, the GG genotype showed a 0.45-fold decreased HCC risk in a recessive model. The MiR-499 G allele was significantly associated with decreased risk of HCC among patients infected with HBV in a dominant model (OR=0.09, 95%CI= 0.02-0.29). In conclusion, the MiR-499A>G rs3746444 polymorphism is associated with HCC risk in the Chinese population, and may be useful predictive marker for CAD susceptibility.

Economic Design of the Specification for Geometrical Quality Characteristic

  • Ma, Yizhong;Zhao, Fengyu;Xu, Jichao
    • International Journal of Quality Innovation
    • /
    • v.2 no.1
    • /
    • pp.50-57
    • /
    • 2001
  • The economic design of specification limits must be determined on an economic basis where we minimize total loss to society, which consists of both the producer and the consumer. Economic specification limits have been developed based on the assumption that the quality characteristic is normally distributed. Unfortunately, the assumption is not to meet some practical cases. In this paper, some non-normal distributions are considered for quality characteristic with geometrical features. An economic model for selecting the optimum specification limits on the basis of minimizing total cost is introduced. A case study is presented to illustrate the application in practice.

  • PDF

Improved Conditional Differential Attacks on Round-Reduced Grain v1

  • Li, Jun-Zhi;Guan, Jie
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.9
    • /
    • pp.4548-4559
    • /
    • 2018
  • Conditional differential attack against NFSR-based cryptosystems proposed by Knellwolf et al. in Asiacrypt 2010 has been widely used for analyzing round-reduced Grain v1. In this paper, we present improved conditional differential attacks on Grain v1 based on a factorization simplification method, which makes it possible to obtain the expressions of internal states in more rounds and analyze the expressions more precisely. Following a condition-imposing strategy that saves more IV bits, Sarkar's distinguishing attack on Grain v1 of 106 rounds is improved to a key recovery attack. Moreover, we show new distinguishing attack and key recovery attack on Grain v1 of 107 rounds with lower complexity O($2^{34}$) and appreciable theoretical success probability 93.7%. Most importantly, our attacks can practically recover key expressions with higher success probability than theoretical results.

Selecting Six Sigma Projects

  • Akpolat, Hasan;Xu, Jichao
    • International Journal of Quality Innovation
    • /
    • v.3 no.2
    • /
    • pp.132-137
    • /
    • 2002
  • The quality improvement methodology Six Sigma gained enormous international popularity in the past few years, mainly due to its successful implementation at General Electric. Six Sigma is now commonly understood not only as a statistical measure for process performance (6$\sigma$ stands for 3.4 defects per million opportunities) to improve product quality but it has also become a strategic initiative undertaken by many organisations to improve management quality. In the centre of the Six Sigma methodology is the improvement project, often referred to as Black Belt or Green Belt project. Although every business is different and business priorities differ from company to company, however all businesses face the same problem when it comes to Six Sigma projects: How to choose the right project\ulcorner This article intends to provide some answers to this and other frequently asked questions about Six Sigma projects.

QFD Model for Quality Performance Self-assessment

  • Liu, Yumin;Xu, Jichao
    • International Journal of Quality Innovation
    • /
    • v.7 no.1
    • /
    • pp.112-127
    • /
    • 2006
  • How to measure Quality Performance (QP) or excellence performance in organizations is very important for improving the quality of an organization's products and services. This paper takes Quality Function Deployment (QFD) as a useful tool to identify the key characteristics of quality performance and measure the influence factors on quality performance. Most national quality awards provide a framework of the criteria to show the essential elements of an organization's quality performance and get the Quality Performance Score (QPS) by self-assessment using the criteria. By means of these criteria, especially, the criteria of China Quality Award (CQA), a measurable indicator system for quality performance is set up. A four-phase QFD model of assessment for quality performance is developed. This QFD model not only presents the most important efforts for the deployment of the measurable indicators of quality performance, but also takes great advantage of evaluating the quality performance and obtaining the quality performance score. The measurable indicator hierarchy of quality performance is formed and its implementation method for assessment quality performance is described in this paper.

Modelling of evaporation from free water surface

  • Song, Wei-Kang;Chen, Yibo
    • Geomechanics and Engineering
    • /
    • v.21 no.3
    • /
    • pp.237-245
    • /
    • 2020
  • The process of evaporation from free water surface was simulated in a large scale environmental chamber under various controlled atmospheric conditions and also was modelled by a new mass transfer model. Six evaporation tests were conducted with increasing wind speed and air temperature in the environmental chamber, and hence the effect of atmosphere parameters on the evaporation process and the corresponding response of water were investigated. Furthermore, based on the experiment results, seven general types of mass transfer models were evaluated firstly, and then a new model consisted of wind speed function and air relative humidity function was proposed and validated. The results show that the free water evaporation is mainly affected by the atmospheric parameters and the evaporation rate increases with the increasing air temperature and wind speed. Both the air and soil temperatures are affected by the energy transformation during water evaporation. The new model can satisfactorily describe the evaporation process from free water surface under different atmospheric conditions.

Low-Overhead Feedback Topology Design for the K-User MIMO Interference Alignment

  • Jin, Jin;Gao, Xiang-Chuan;Li, Xingwang;Cavalcante, Charles Casimiro;Li, Lihua
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.11
    • /
    • pp.5304-5322
    • /
    • 2018
  • Since designing a feedback topology is a practical way to implement interference alignment at reduced cost of channel state information (CSI) feedback, six feedback topologies have been presented in prior works for a K-user multiple-input multiple-output interference channel. To fully reveal the potential benefits of the feedback topology in terms of the saving of CSI overhead, we propose a new feedback topology in this paper. By efficiently performing dimensionality-decreasing at the transmitter side and aligning interference signals at a subset of receivers, we show that the proposed feedback topology obtains substantial reduction of feedback cost over the existing six feedback designs under the same antenna configuration.

Value of Porous Titanium Alloy Plates for Chest Wall Reconstruction after Resection of Chest Wall Tumors

  • Qi, Yu;Li, Xin;Zhao, Song;Han, Yong
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.11
    • /
    • pp.4535-4538
    • /
    • 2014
  • Objective: To explore the value of porous titanium alloy plates for chest wall reconstruction after resection of chest wall tumors. Materials and Methods: A total of 8 patients with chest wall tumors admitted in our hospital from Jan. 2006 to Jan. 2009 were selected and underwent tumor resection, then chest wall repair and reconstruction with porous titanium alloy plates for massive chest wall defects. Results: All patients completed surgery successfully with tumor resection-induced chest wall defects being $6.5{\times}7cm{\sim}12{\times}15.5$ cm in size. Two weeks after chest wall reconstruction, only 1 patient had subcutaneous fluidify which healed itself after pressure bandaging following fluid drainage. Postoperative pathological reports showed 2 patients with costicartilage tumors, 1 with squamous cell carcinoma of lung, 1 with lung adeno-carcinoma, 1 with malignant lymphoma of chest wall, 2 with chest wall metastasis of breast cancers and 1 with chest wall neurofibrosarcoma. All patients had more than 2~5 years of follow-up, during which time 1 patient with breast cancer had surgical treatment due to local recurrence after 7 months and none had chest wall reconstruction associated complications. The mean survival time of patients with malignant tumors was ($37.3{\pm}5.67$) months. Conclusions: Porous titanium alloy plates are safe and effective in the chest wall reconstruction after resection of chest tumors.

Formation Mechanism Analysis and Detection of Charged Particles in an Aero-engine Gas Path

  • Wen, Zhenhua;Hou, Junxing;Jiang, ZhiQiang
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.16 no.2
    • /
    • pp.247-253
    • /
    • 2015
  • The components of an aero-engine gas path cannot be monitored in a timely way due to a lack of real-time monitoring technologies. As an attempt to address this problem, we have conducted research on a condition monitoring technology based on the charging characteristics of particles in an aero-engine gas path, and emphatically analyze the formation of particles in an aero-engine gas path, the charging mechanism of carbon particles and the factors that influence the charge quantity and polarity. The verification experiments are performed on the simulated experiment platform and a turbo-shaft engine test bench. The results show the carbon particles' carry charge, and an obvious change in the total electrostatic charge level in the aero-engine gas path due to the increased carbon particles produced by burning or abnormal metal particles; the charge number is related to the size of particles, and the bigger carbon particles carry a negative charge and metal particles carry a positive charge; the change in engine power can lead to an obvious change in the level of electrostatic charge in the gas path, and the change in electrostatic charge results from the extra carbon particles formed in the rich-oil burning process. The research provides a reference for establishing the baseline of electrostatic charge while the engine runs on different power. The study also demonstrates the validity of the electrostatic monitoring technology and establishes a base for developing the application of electrostatic monitoring technology in aero-engines.

Galloping of steepled main cables in long-span suspension bridges during construction

  • An, Yonghui;Wang, Chaoqun;Li, Shengli;Wang, Dongwei
    • Wind and Structures
    • /
    • v.23 no.6
    • /
    • pp.595-613
    • /
    • 2016
  • Large amplitude oscillation of steepled main cables usually presents during construction of a long-span bridge. To study this phenomenon, six typical main cables with different cross sections during construction are investigated. Two main foci have been conducted. Firstly, aerodynamic coefficients of a main cable are obtained and compared through simulation and wind tunnel test: (1) to ensure the simulation accuracy, influences of the numerical model's grid size, and the jaggy edges of main cable's cross section on main cable's aerodynamic coefficients are investigated; (2) aerodynamic coefficients of main cables at different wind attack angles are obtained based on the wind tunnel test in which the experimental model is made by rigid plastic using the 3D Printing Technology; (3) then numerical results are compared with wind tunnel test results, and they are in good agreement. Secondly, aerodynamic coefficients of the six main cables at different wind attack angles are obtained through numerical simulation. Then Den Hartog criterion is used to analyze the transverse galloping of main cables during construction. Results show all the six main cables may undergo galloping, which may be an important reason for the large amplitude oscillation of steepled main cables during construction. The flow structures around the main cables indicate that the characteristic of the airflow trajectory over a steepled main cable may play an important role in the galloping generation. Engineers should take some effective measures to control this harmful phenomenon due to the big possibility of the onset of galloping during the construction period.