• Title/Summary/Keyword: Zhang-Evans model

Search Result 1, Processing Time 0.019 seconds

Prediction of Viscosity in Liquid Epoxy Resin Mixed with Micro/Nano Hybrid Silica (액상 에폭시 수지와 마이크로/나노 하이브리드 실리카 혼합물의 점도 예측)

  • Huang, Guang-Chun;Lee, Chung-Hee;Lee, Jong-Keun
    • Korean Journal of Materials Research
    • /
    • v.21 no.2
    • /
    • pp.100-105
    • /
    • 2011
  • The relative viscosity was measured at different filler loadings for a cycloaliphatic epoxy resin and hexahydro-4-methylphthalic anhydride hardener system filled with micro/nano hybrid silica. Various empirical models were fitted to the experimental data and a fitting parameter such as critical filler fractions (${\phi}_{max}$) was estimated. Among the models, the Zhang-Evans model gave the best fit to the viscosity data. For all the silica loadings used, ln (relative viscosity) varied linearly with filler loadings. Using the Zhang-Evans model and the linearity characteristics of the viscosity change, simple methods to predict the relative viscosity below ${\phi}_{max}$ are presented in this work. The predicted viscosity values from the two methods at hybrid silica fractions of $\phi$ = 0.086 and 0.1506 were confirmed for a micro:nano = 1:1 hybrid filler. As a result, the difference between measured and predicted values was less than 11%, indicating that the proposed predicting methods are in good agreement with the experiment.