Browse > Article
http://dx.doi.org/10.3740/MRSK.2011.21.2.100

Prediction of Viscosity in Liquid Epoxy Resin Mixed with Micro/Nano Hybrid Silica  

Huang, Guang-Chun (Performance Materials Team/R&D Center, KOLON Industries, Inc.)
Lee, Chung-Hee (Department of Polymer Science and Engineering, Kumoh National Institute of Technology)
Lee, Jong-Keun (Department of Polymer Science and Engineering, Kumoh National Institute of Technology)
Publication Information
Korean Journal of Materials Research / v.21, no.2, 2011 , pp. 100-105 More about this Journal
Abstract
The relative viscosity was measured at different filler loadings for a cycloaliphatic epoxy resin and hexahydro-4-methylphthalic anhydride hardener system filled with micro/nano hybrid silica. Various empirical models were fitted to the experimental data and a fitting parameter such as critical filler fractions (${\phi}_{max}$) was estimated. Among the models, the Zhang-Evans model gave the best fit to the viscosity data. For all the silica loadings used, ln (relative viscosity) varied linearly with filler loadings. Using the Zhang-Evans model and the linearity characteristics of the viscosity change, simple methods to predict the relative viscosity below ${\phi}_{max}$ are presented in this work. The predicted viscosity values from the two methods at hybrid silica fractions of $\phi$ = 0.086 and 0.1506 were confirmed for a micro:nano = 1:1 hybrid filler. As a result, the difference between measured and predicted values was less than 11%, indicating that the proposed predicting methods are in good agreement with the experiment.
Keywords
viscosity prediction; micro/nano hybrid silica; Zhang-Evans model; liquid epoxy;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By SCOPUS : 0
연도 인용수 순위
1 K. Sanada, Y. Tada, Y. Shindo, Compos. Appl. Sci. Manuf., 40, 724 (2009).   DOI   ScienceOn
2 D. H. Kim, D. Y. Maeng, J. H. Lee and C. W. Won, Kor. J. Mater. Res. 9(3), 315 (1999) (in Korean).   과학기술학회마을
3 T. Hanemann, Compos. Appl. Sci. Manuf., 37, 2155 (2006).   DOI   ScienceOn
4 T. Hanemann, Compos. Appl. Sci. Manuf., 37, 735 (2006).   DOI   ScienceOn
5 S. Beun, C. Baily, J. Devaux and G. Leloup, Dent. Mater., 24, 548 (2008).   DOI   ScienceOn
6 Technical Bulletin Fine particles No. 11-Basic Characteristics of $AEROSIL^{(R)}$, p. 55-56, Degussa, Germany, 2006.
7 L. E. Nielsen, Mechanical Properties of Polymers and Composites, 2nd ed., p. 377-459, Marcel Dekker, NewYork (1994)
8 A. Einstein, Ann. Phys., 324, 289 (1906).   DOI
9 A. Einstein, Ann. Phys., 340, 591 (1911).   DOI
10 I. M. Krieger and T. J. Dougherty, Trans. Soc. Rheol., 3, 137 (1959).   DOI
11 D. Quemada, Rheol. Acta, 16, 82 (1977).   DOI
12 H. Eilers, Kolloid-Zeitschrift, 97, 313 (1941).   DOI
13 M. Mooney, J. Colloid Sci., 6, 162 (1951).   DOI   ScienceOn
14 J. S. Chong, E. B. Christiansen and A. D. Baer, J. Appl. Polymer Sci., 15, 2007 (1971).   DOI
15 N. Ilie and R. Hickel, Dent. Mater., 25, 810 (2009).   DOI   ScienceOn
16 T. Zhang and J. R. G. Evans, J. Eur. Ceram. Soc., 5, 165 (1989).   DOI   ScienceOn
17 Q. B. Guo, M. Z. Rong, G. L. Jia, K. T. Lau and M. Q. Zhang, Wear, 266, 658 (2009).   DOI   ScienceOn
18 F. H. Su, Z. Z. Zhang, K. Wang, W. Jiang, X. H. Men and W. M. Liu, Compos. Appl. Sci. Manuf., 37, 1351 (2006).   DOI   ScienceOn
19 F. Bauer, R. Flyunt, K. Czihal, M. R. Buchmeiser, H. Langguth and R. Mehnert, Macromol, Mater. Eng,, 291, 493 (2006).   DOI   ScienceOn