• Title/Summary/Keyword: Zeroth-Order Antenna

Search Result 27, Processing Time 0.024 seconds

Compact Spiral Zeroth-order Resonance Antenna using metamaterial transmission line (메타물질 전송선로를 이용한 소형 나선구조 Zeroth-order Resonance 안테나)

  • Park, Jae-Hyun;Ryu, Young-Ho;Kim, Dong-Jin;Choo, Ho-Sung;Lee, Jeong-Hae
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.44 no.7 s.361
    • /
    • pp.1-6
    • /
    • 2007
  • In this paper, the spiral zeroth-order resonance (ZOR) antenna using composite right- and left-handed (CRLH) transmission line is proposed. The zeroth-order resonant characteristics of the antenna are described by dispersion relation of a periodic structure. The size of the $2{\times}2$ spiral ZOR antenna is $0.155{\lambda}_{0}{\times}0.155{\lambda}_{0}$. By increasing shunt inductance of CRLH transmission line, the size of this antenna is reduced by 65% compared with that of a mushroom ZOR antenna. The radiation pattern of this antenna have omnidirectional pattern which is similar to that of mushroom ZOR antenna.

Wideband ENG Zeroth-Order Resonant Antenna Having Mushroom Shape (버섯 형태를 갖는 광대역 ENG 영차 공진 안테나)

  • Chang, Woo-Cheol;Lee, Bom-Son
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.9
    • /
    • pp.997-1002
    • /
    • 2009
  • This Letter presents a wideband ENG(Epsilon Negative) ZOR(Zeroth-Order Resonant) antenna designed on a microstrip line. It has a mushroom structure and its size is only $7.65{\times}1.31{\times}2.37\;mm$(or $0.306{\times}0.053{\times}0.095\;{\lambda}_0$ at 12 GHz) owing to zeroth-order resonance. The design procedures with closed form solutions are provided using transmission line theory considering radiation loss. The measured antenna bandwidth is about 20.0 % at 9.2 GHz and antenna gain is 7.1 dBi despite the compact size.

Improvement of the Radiation Efficiency for a CPW(Co-Planar Waveguide)-Fed ZOR(Zeroth-Order Resonant) Antenna (Co-Planar Waveguide(CPW) 급전 영차 공진 안테나의 방사효율 개선)

  • Cho, Tae-Joon;Lee, Hong-Min
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.1
    • /
    • pp.59-66
    • /
    • 2011
  • In this paper, a co-planar waveguide(CPW)-fed zeroth-order resonant(ZOR) antenna with an improved radiation efficiency was built and tested. The unit cell of the proposed antenna consists of a series metal-insulator-metal(MIM) capacitor and a shorted shunt stub inductor. In order to reduce the antenna size and to achieve the high radiation efficiency two shorted shunt stub arms bent by 90 degree were connected to the ground plane through the via. The proposed antenna consisting of two unit cells has an open ended composite right/left-handed(CRLH) transmission line structure. As a result the dominantly radiating parts of the antenna comes from shunt stub arms and vertical vias. The total size of the fabricated zeroth-order resonant antenna is $0.22\;{\lambda}_0{\times}0.22\;{\lambda}_0$. The measured gain and efficiency of the fabricated antenna have been enhanced by 3.07 dBi and 75 %, respectively, at the zeroth-order resonant frequency of 2.97 GHz.

A Unit-Cell Varying Pattern Reconfigurable Zeroth-order Resonance Antenna

  • Hyeon-Cheol Ki
    • International journal of advanced smart convergence
    • /
    • v.13 no.2
    • /
    • pp.1-6
    • /
    • 2024
  • Reconfiguration and miniaturization of antennas have become key attributes in modern wireless communication systems. Reconfiguration of radiation pattern can alleviate the problems encountered in modern wireless communication systems such as multi-path problems. Physical limitation of miniaturization also can be overcome by using a zeroth-order resonance (ZOR) antenna based on metamaterial. In order to achieve reconfiguration and miniaturization of antennas at the same time, we propose a new pattern reconfigurable zeroth-order resonance (ZOR) antenna that reconfigures the radiation patterns by varying the position and the number of unit cells comprising the antenna. The antenna is fabricated in an equilateral triangular shaped symmetrical structure to increase pattern variety. This structure can easily provide eight different radiation patterns (two omnidirectional and six monopole like patterns).

Compact Metamaterial-Based Tunable Zeroth-Order Resonant Antenna with Chip Variable Capacitor

  • Jung, Youn-Kwon;Lee, Bomson
    • Journal of electromagnetic engineering and science
    • /
    • v.13 no.3
    • /
    • pp.189-191
    • /
    • 2013
  • This letter presents a compact metamaterial-based tunable zeroth-order resonant antenna. It is based on the double-negative unit cell with a function of tunable inductance realized by a varactor and impedance convertor in the shunt branch. The resonant frequency of the designed antenna ranges from 2.31 to 3.08 GHz, depending on the capacitance of the used varactor. Its size is very compact ($0.05{\lambda}_0{\times}0.2{\lambda}_0$) with a relatively wide tunable range of 29.1%. The impedance bandwidth of the antenna is from 20 to 50 MHz for the resonant center frequency. The measured maximum total realized gain is from -0.68 dBi (2.43 GHz) to 1.69 dBi (2.97 GHz). The EM-simulated and measured results are in good agreement.

A Compact Zeroth-Order Resonant Antenna on Vialess CPW Single Layer

  • Jang, Tae-Hee;Lim, Sung-Joon
    • ETRI Journal
    • /
    • v.32 no.3
    • /
    • pp.472-474
    • /
    • 2010
  • In this letter, a novel zeroth-order resonant (ZOR) antenna on vialess co-planar waveguide (CPW) is proposed. It is based on a composite right/left-handed CPW transmission line. To achieve a compact size, this antenna utilizes the ZOR condition, and its reactive parameters determine the resonant frequency. Each unit cell is composed of a metallic top patch and meander lines. Since it is realized on the CPW single layer, the proposed antenna has the benefits of being a compact size and easy to fabricate. The bandwidth of 6.8% and efficiency of 62% are experimentally achieved. Its bandwidth is enhanced compared with other ZOR antennas.

Zeroth-Order Resonant Antenna with Frequency Reconfigurable Radiating Structures (주파수 재구성 가능한 방사 구조를 갖는 영차 공진 안테나)

  • Lee, Hongmin
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.9
    • /
    • pp.12-20
    • /
    • 2013
  • In this paper, a co-planar waveguide(CPW) fed zeroth-order resonant(ZOR) antenna with frequency reconfigurable radiating structures is fabricated and measured. The unit cell of proposed antenna consists of a series metal-insulator-metal(MIM) capacitor and two shunt line inductors which are shorted through the via. The proposed antenna is designed based on a composite right/left-handed(CRLH) transmission line with two unit cells and it has open ended structure in order to radiate electromagnetic energy mainly on the shunt arm. In order to reduce the antenna size and to exhibit a frequency reconfigurable ability using diode switches four straight strips bent by 90 degrees are used as shunt inductors. The total size of fabricated antenna is $0.22{\lambda}_0{\times}0.16{\lambda}_0$ at zeroth-order resonant(ZOR) frequency. The measured maximum gain and bandwidth (VSWR ${\leq}2$) are 3.1 dBi and 56MHz at ZOR frequency of 2.97 GHz, respectively. This type of antenna can be applied to a frequency reconfigurable antenna system with triple bands.

Flexible Zeroth-Order Resonant(ZOR) Antenna Independent of Curvature Diameter (곡률에 독립적인 플렉서블 기판 위에 설계된 영차 공진 안테나)

  • Lim, In-Seop;Chung, Tony J.;Lim, Sung-Joon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.1
    • /
    • pp.21-28
    • /
    • 2012
  • In this paper, we propose a flexible zeroth-order resonant(ZOR) antenna. Its zero phase constant ensures that the antenna performance is independent of substrate deformation. A composite right/left-handed transmission line is designed based on coplanar waveguide technology to realize the zeroth-order resonance phenomenon. The CRLH is an implementation of metamaterial(left handed material) which is composed of shunt inductance and series capacitance. In order to yield additional circuital parameter, chip inductor and gap capacitor is added, respectively. The proposed ZOR antenna provides good performances: reasonable bandwidth(6.5 %) and peak gain(0.69~1.39 dBi). Simulated and measured results show that the antenna's resonant frequencies and radiation patterns are almost unchanged at different curvature diameters of 30, 50, 70 mm, as well as for a flat surface.

PCB-Embedded Antenna for 80 GHz Chip-to-Chip Communication

  • Chung, Jae-Young;Hong, Wonbin;Baek, Kwang-Hyun;Lee, Young-Ju
    • Journal of electromagnetic engineering and science
    • /
    • v.14 no.1
    • /
    • pp.43-45
    • /
    • 2014
  • We propose a printed circuit board (PCB)-embedded antenna for millimeter-wave chip-to-chip communication. The antenna is 0.18 mm in height which is 1/20 wavelength at 80 GHz. In order to realize such a low profile, a zeroth-order resonator antenna with a periodic array of four unit cells is employed, and its geometry is optimized to cover an 8-GHz bandwidth from 76 to 84 GHz. With this;the antenna is capable of radiating in a direction parallel to the board length despite the short distance between the ground and the radiator. Simulation and measurement results show that the optimized design has low reflection coefficients and consistent radiation patterns throughout the target bandwidth.

CPW-Fed Arbitrary Frequency-Switchable Antenna Using CRLH Transmission Line

  • Lim, Inseop;Lim, Sungjoon
    • ETRI Journal
    • /
    • v.36 no.1
    • /
    • pp.151-154
    • /
    • 2014
  • A novel frequency-switchable antenna that uses PIN diodes and a composite right- and left-handed transmission line (CRLH TL) is proposed. The CRLH TL provides multi-order resonance, including a zeroth-order resonance (ZOR), and its shunt stub determines the ZOR frequency. Thus, the resonant frequency is arbitrarily chosen by lumped chip inductors on the shunt stub. Two prototypes are designed using different chip inductors while maintaining the antenna geometries. Antenna #1 can switch the resonant frequency from 1.8 GHz to 2.3 GHz. Antenna #2 can switch its resonance from 0.9 GHz to 2.3 GHz.