• 제목/요약/키워드: Zero-Voltage switching (ZVS) Turn-On.

검색결과 58건 처리시간 0.021초

영전류 스위칭 방식의 보조스위치를 갖는 새로운 영전압 스위칭 방식의 PWM 컨버터 (A New Zero-Voltage-Switching PWM Converters with Zero-Current-Switched Auxiliary Switch)

  • 마근수;홍일희;김양모
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제52권12호
    • /
    • pp.632-640
    • /
    • 2003
  • In conventional Zero-Voltage-Transition(ZVT) PWM converters, zero-voltage turn-on and turn-off for main switch without increasing voltage/current stresses is achieved at a fixed frequency. The switching loss, stress, and noise, however, can't be minimized because they adopt auxiliary switches turned off under hard-switching condition. In this paper, new ZVS-PWM converters of which both active and passive switches are always operating with soft-switching condition are proposed. Therefore, the proposed ZVS-PWM converters are most suitable for avionics applications requiring high-power density. Breadboarded ZVS-PWM boost converters using power MOSFET are constructed to verify theoretical analysis.

A Simple Structure of Zero-Voltage Switching (ZVS) and Zero-Current Switching (ZCS) Buck Converter with Coupled Inductor

  • Wei, Xinxin;Luo, Ciyong;Nan, Hang;Wang, Yinghao
    • Journal of Power Electronics
    • /
    • 제15권6호
    • /
    • pp.1480-1488
    • /
    • 2015
  • In this paper, a revolutionary buck converter is proposed with soft-switching technology, which is realized by a coupled inductor. Both zero-voltage switching (ZVS) of main switch and zero-current switching (ZCS) of freewheeling diode are achieved at turn on and turn off without using any auxiliary circuits by the resonance between the parasitic capacitor and the coupled inductor. Furthermore, the peak voltages of the main switch and the peak current of the freewheeling diode are significantly reduced by the coupled inductor. As a result, the proposed converter has the advantages of simple circuit, convenient control, low consumption and so on. The detailed operation principles and steady-state analysis of the proposed ZVS-ZCS buck converter are presented, and detailed power loss analysis and some simulation results are also included. Finally, experimental results based on a 200-W prototype are provided to verify the theory and design of the proposed converter.

Analysis, Design, and Implementation of a Zero-Voltage-Transition Interleaved Boost Converter

  • Ting, Naim Suleyman;Sahin, Yakup;Aksoy, Ismail
    • Journal of Power Electronics
    • /
    • 제17권1호
    • /
    • pp.41-55
    • /
    • 2017
  • This study proposes a novel zero voltage transition (ZVT) pulse width modulation (PWM) DC-DC interleaved boost converter with an active snubber cell. All the semiconductor devices in the converter turn on and off with soft switching to reduce the switching power losses and improve the overall efficiency. Through the interleaved approach, the current stresses of the main devices and the ripple of the output voltage and input current are reduced. The main switches turn on with ZVT and turn off with zero voltage switching (ZVS). The auxiliary switch turns on with zero current switching (ZCS) and turns off with ZVS. In addition, the snubber cell does not create additional current or voltage stress on the main switches and main diodes. The proposed converter can smoothly achieve soft switching characteristics even under light load conditions. The theoretical analysis and operating stages of the proposed converter are made for the D > 50% and D < 50% modes. Finally, a prototype of the proposed converter is implemented, and the experimental results are given in detail for 500 W and 50 kHz. The overall efficiency of the proposed converter reached 95.5% at nominal output power.

Optimal Soft-Switching Scheme for Bidirectional DC-DC Converters with Auxiliary Circuit

  • Lee, Han Rim;Park, Jin-Hyuk;Lee, Kyo-Beum
    • Journal of Power Electronics
    • /
    • 제18권3호
    • /
    • pp.681-693
    • /
    • 2018
  • This paper proposes a soft-switching bidirectional dc-dc converter (BDC) with an auxiliary circuit. The proposed BDC can achieve the zero-voltage switching (ZVS) using an auxiliary circuit in the buck and boost operations. The auxiliary circuit supplies optimal energy for the ZVS operation of the main switches. The auxiliary circuit consists of a resonant inductor, a back-to-back switch and two capacitors. A small-sized resonant inductor and an auxiliary switch with a low-rated voltage can be used in the auxiliary circuit. Zero-current switching (ZCS) turn-on and turn-off of the auxiliary switches are possible. The proposed soft-switching scheme has a look-up table for optimal switching of the auxiliary switches. The proposed strategy properly adjusts the turn-on time of the auxiliary switch according to the load current. The proposed BDC is verified by the results of PSIM simulations and experiments on a 3-kW ZVS BDC system.

A new lossless snubber for DC-DC converters with energy transfer capability

  • Esfahani, Shabnam Nasr;Delshad, Majid;Tavakoli, Mohhamad Bagher
    • Smart Structures and Systems
    • /
    • 제25권3호
    • /
    • pp.385-391
    • /
    • 2020
  • In this paper, a new passive lossless snubber circuit with energy transfer capability is proposed. The proposed lossless snubber circuit provides Zero-Current Switching (ZCS) condition for turn-on instants and Zero-Voltage Switching (ZVS) condition for turn-off instants. In addition, its diodes operate under soft switching condition. Therefore, no significant switching losses occur in the converter. Since the energy of the snubber circuit is transferred to the output, there are no significant conduction losses. The proposed snubber circuit can be applied on isolated and non-isolated converters. To verify the operation of the snubber circuit, a boost converter using the proposed snubber is implemented at 70W. Also, the measured conducted Efficiency Electromagnetic Interference (EMI) of the proposed boost converter and conventional ones are presented which show the effects of proposed snubber on EMI reduction. The experimental results confirm the presented theoretical analysis.

Interleaved ZVS Resonant Converter with a Parallel-Series Connection

  • Lin, Bor-Ren;Shen, Sin-Jhih
    • Journal of Power Electronics
    • /
    • 제12권4호
    • /
    • pp.528-537
    • /
    • 2012
  • This paper presents an interleaved resonant converter with a parallel-series transformer connection in order to achieve ripple current reduction at the output capacitor, zero voltage turn-on for the active switches, zero current turn-off for the rectifier diodes, less voltage stress on the rectifier diodes, and less current stress on the transformer primary windings. The primary windings of the two transformers are connected in parallel in order to share the input current and to reduce the root-mean-square (rms) current on the primary windings. The secondary windings of the two transformers are connected in series in order to ensure that the transformer primary currents are balanced. A full-wave diode rectifier is used at the output side to clamp the voltage stress of the rectifier diode at the output voltage. Two circuit modules are operated with the interleaved PWM scheme so that the input and output ripple currents are reduced. Based on the resonant behavior, all of the active switches are turned on under zero voltage switching (ZVS), and the rectifier diodes are turned off under zero current switching (ZCS) if the operating switching frequency is less than the series resonant frequency. Finally, experiments with a 1kW prototype are described to verify the effectiveness of the proposed converter.

Zero-Current-Switching in Full-Bridge DC-DC Converters Based on Activity Auxiliary Circuit

  • Chu, Enhui;Lu, Ping;Xu, Chang;Bao, Jianqun
    • Journal of Power Electronics
    • /
    • 제19권2호
    • /
    • pp.353-362
    • /
    • 2019
  • To address the problem of circulating current loss in the traditional zero-current switching (ZCS) full-bridge (FB) DC/DC converter, a ZCS FB DC/DC converter topology and modulation strategy is proposed in this paper. The strategy can achieve ZCS turn on and zero-voltage and zero-current switching (ZVZCS) turn off for the primary switches and realize ZVZCS turn on and zero-voltage switching (ZVS) turn off for the auxiliary switches. Moreover, its resonant circuit power is small. Compared with the traditional phase shift full-bridge converter, the new converter decreases circulating current loss and does not increase the current stress of the primary switches and the voltage stress of the rectifier diodes. The diodes turn off naturally when the current decreases to zero. Thus, neither reverse recovery current nor loss on diodes occurs. In this paper, we analyzed the operating principle, steady-state characteristics and soft-switching conditions and range of the converter in detail. A 740 V/1 kW, 100 kHz experimental prototype was established, verifying the effectiveness of the converter through experimental results.

ZVZCS가 가능한 LLC AC to DC 고주파 공진 컨버터의 특성 해석에 관한 연구 (A Study on the Characteristics Analysis of LLC AC to DC High Frequency Resonant Converter capable of ZVZCS)

  • 김종해
    • 전기전자학회논문지
    • /
    • 제25권4호
    • /
    • pp.741-749
    • /
    • 2021
  • 본 논문에서 제안한 전류형 LLC AC to DC 고주파 공진 컨버터는 스위치 양단에 병렬로 공진 커패시터(C1, C2)를 연결함으로써 ZVS(Zero Voltage Switching)동작 뿐만 아니라 2차측 Diode의 ZCS(Zero Current Switching) 동작이 가능하므로 스위칭 소자의 턴-온 및 2차측 다이오드의 턴-오프 손실을 저감시킬 수 있다. 본 논문에서 제안한 LLC AC to DC 고주파 공진 컨버터의 회로 해석은 무차원화 제어 파라메타를 도입하여 범용성 있게 기술하였다. 또한 제안한 LLC AC to DC 고주파 공진 컨버터의 운전 특성은 무파원화 제어 주파수(μ), 무차원화 저항(λ) 등의 무차원화 제어 파라메타를 이용하여 특성 평가를 수행하였다. 특성 평가를 통한 특성값을 기초한 LLC AC to DC 고주파 공진 컨버터 설계 기법의 일예를 제시하였으며, 실험 및 PSIM 시뮬레이션을 통해 이론 해석의 정당성을 입증하였다.

영전압 턴-온/오프 스위칭을 갖는 새로운 부분 직렬 공진형 DC/DC 컨버터 (A New Partial Series Resonant DC/DC Converter with Zero-Voltage On/off Simultaneously)

  • 김의성;이동윤;현동석
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 추계학술대회 논문집 학회본부 A
    • /
    • pp.358-360
    • /
    • 1999
  • This paper presents a new soft-switching partial series resonant DC/DC converter (PSRC) with zero-voltage on/off simultaneously, suitable for application in the high power and high frequency switching. The proposed converter has not only advantages of the conventional PSRC but also zero-voltage turn-on and turn-off of the main switches for the entire load ranges by adding the auxiliary circuit, and zero-voltage-switching (ZVS) turn-on of the auxiliary switches. The operation principles of the new converter are explained in detail and the several interesting simulation and experimental results verify the validity of the proposed circuit.

  • PDF

New ZVZCT Bidirectional DC-DC Converter Using Coupled Inductors

  • Qian, Wei;Zhang, Xi;Li, Zhe;Jin, Wenqiang;Wiedemann, Jochen
    • Journal of Power Electronics
    • /
    • 제19권1호
    • /
    • pp.11-23
    • /
    • 2019
  • In this study, a novel zero voltage zero current transition (ZVZCT) bidirectional DC-DC converter is proposed by employing coupled inductors. This converter can turn the main switch on at ZVZCT and it can turn it off with zero voltage switching (ZVS) for both the boost and buck modes. These characteristics are obtained by using a simple auxiliary sub-circuit regardless of the power flow direction. In the boost mode, the auxiliary switch achieves zero current switching (ZCS) turn-on and ZVS turn off. Due to the coupling inductors, this converter can make further efficiency improvements because the resonant energy in the capacitor or inductor can be transferred to the load. The main diode operates with ZVT turn-on and ZCS turn-off in the boost mode. For the buck mode, there is a releasing circuit to conduct the currents generated by the magnetic flux leakage to the output. The auxiliary switch turns on with ZCS and it turns off with ZVT. The main diode also turns on with ZVT and turns off with ZCS. The design method and operation principles of the converter are discussed. A 500 W experimental prototype has been built and verified by experimental results.