• 제목/요약/키워드: Zero-Sequence Current

검색결과 107건 처리시간 0.036초

Output Voltage Regulation for Harmonic Compensation under Islanded Mode of Microgrid

  • Lim, Kyungbae;Choi, Jaeho
    • Journal of Power Electronics
    • /
    • 제17권2호
    • /
    • pp.464-475
    • /
    • 2017
  • This study examines a P+multi resonant-based voltage control for voltage harmonics compensation under the islanded mode of a microgrid. In islanded mode, the inverter is defined as a voltage source to supply the full local load demand without the connection to the grid. On the other hand, the output voltage waveform is distorted by the negative and zero sequence components and current harmonics due to the unbalanced and nonlinear loads. In this paper, the P+multi resonant controller is used to compensate for the voltage harmonics. The gain tuning method is assessed by the tendency analysis of the controller as the variation of gain. In addition, this study analyzes the slight voltage magnitude drop due to the practical form of the P+multi resonant and proposes a counter method to solve this problem by adding the PI-based voltage restoration method. The proposed P+multi resonant controller to compensate for the voltage harmonics is verified through the PSIM simulation and experimental results.

Performance Improvement of an Active Neutral Harmonic Suppressor System Under Unbalanced Load Conditions

  • Choi, Se-Wan;Jang, Min-Soo
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2001년도 Proceedings ICPE 01 2001 International Conference on Power Electronics
    • /
    • pp.822-828
    • /
    • 2001
  • Three-phase four-wire electrical distribution systems are widely employed in manufacturing plants, commercial and residential buildings. Due to the nonlinear loads connected to the distribution system, the neutral conductor carries excessive harmonic currents even under balanced loading since the triplen harmonics in phase currents do not cancel each other. This may result in wiring failure of the neutral conductor and overloading of the distribution transformer. In response to these concerns, a cost-effective neutral current harmonic suppressor system has been proposed [6]. This paper proposes an improved control method for the harmonic suppressor system under unbalanced load conditions. The proposed control method compensates for only the harmonic components in the neutral conductor, and the zero-sequence fundamental component due to unbalanced loading is prevented from flowing through the harmonic suppressor system. This remedies overloading and power loss of the system. The experimental results on a prototype validate the proposed control approach.

  • PDF

새로운 영상전류 주입법에 한 다이오드 정류기의 고조파 저감 (A New Harmonic Reduction Method of Diode Rectifier by Zero-Sequence Current Injection)

  • 김현정;장민수;최세완;원충연;김규식
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2002년도 전력전자학술대회 논문집
    • /
    • pp.546-550
    • /
    • 2002
  • 본 논문에서는 다이오드 정류기에 단상인버터와 변압기를 이용하여 영상고조파 전류를 주입함으로서 순수한 정현파 입력전류를 얻을 수 있는 새로운 방식의 고조파 저감기술을 제안한다. 본 방식은 주 전력의 흐름에 직렬로 스위칭소자가 연결되지 않아 전력손실이 적으며 보조회로로서 사용된 변압기의 턴비를 조정하면 인버터 스위치의 전류정격을 작게 구현할 수 있다. 본 방식의 타당성을 실험을 통하여 입증하였다.

  • PDF

A Comparison of Control Algorithms for a Doubly Fed Induction Generator in Medium-voltage Wind Power System under Unbalanced Conditions

  • 고유란;박현철;주야충;서용석
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2010년도 하계학술대회 논문집
    • /
    • pp.194-195
    • /
    • 2010
  • This paper investigates control algorithms for a doubly fed induction generator (DFIG) with back-to-back converter in medium-voltage wind power system under unbalanced grid conditions. Operation of DFIG under unbalanced grid conditions causes several problems such as overcurrent, unbalanced currents, active power pulsation and torque pulsation. Three different control algorithms to compensate for the unbalanced conditions have been investigated with respect to four performance factors; fault ride-through capability, efficiency, harmonic distortions and torque pulsation. The control algorithm having zero amplitude of negative sequence current shows the most cost-effective performance concerning fault ride-through capability and efficiency. The control algorithm for nullifying the oscillating component of the instantaneous active power generates least harmonic distortions. Combination of these two control algorithms depending on the operating requirements presents most optimized performance factors under the generalized unbalanced operating conditions.

  • PDF

전력계통안정도 계산앨고리즘의 개선에 관한 연구 (A new algorithm for power system stability calculations)

  • 박영문
    • 전기의세계
    • /
    • 제29권3호
    • /
    • pp.193-200
    • /
    • 1980
  • A new algorithm for power system stability calculations is developed which considers the nonlinear state equations of 8 state variables for each generator dynamics, expollential load models in respect to bus voltages for nonlinear loads, network equations expressed in terms of bus-injected current sources, various kinds of generator and transmission line outages, abrupt changes in loads, and operations of various kinds of portective relaying systems such as distance relaying, reclosing load shedding by under-frequency relays. In the algorithm are included efficient and reliable schemes for solving network equations by means of the Newton-Raphson iterative method and the Optimally-Ordered Triangular Factorization Technique, and simple procedures for determining fault-point negative and zero sequence impedances for unbalanced line faults. An application of the Optimally-Ordered Triangular Factorization Techniques results in remarkable savings in computing time and memory requirements.

  • PDF

Modular Multilevel Converter에서 영상분 전류제어기의 설계 (Design of Zero-sequence Current Controller in Modular Multilevel Converter)

  • 김태형;이종학;김동환;권병기
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2014년도 전력전자학술대회 논문집
    • /
    • pp.55-56
    • /
    • 2014
  • 본 논문에서는 ${\Delta}$결선 또는 3상 4선식 Y결선으로 구성된 Modular Multilevel Converter(MMC)의 동기좌표계에서의 영상분 전류제어방법을 제안한다. 제안된 영상분 전류제어방법은 새로운 가상 2상 전류 생성방법을 사용하며, 기존의 가상 2상 전류 생성방법보다 과도상태 응답특성과 파라미터 오차에 대한 성능이 우수함을 시뮬레이션을 통해 검증하였다.

  • PDF

A Novel Algorithm for Fault Classification in Transmission Lines Using a Combined Adaptive Network and Fuzzy Inference System

  • Yeo, Sang-Min;Kim, Chun-Hwan
    • KIEE International Transactions on Power Engineering
    • /
    • 제3A권4호
    • /
    • pp.191-197
    • /
    • 2003
  • Accurate detection and classification of faults on transmission lines is vitally important. In this respect, many different types of faults occur, such as inter alia low impedance faults (LIF) and high impedance faults (HIF). The latter in particular pose difficulties for the commonly employed conventional overcurrent and distance relays, and if undetected, can cause damage to expensive equipment, threaten life and cause fire hazards. Although HIFs are far less common than LIFs, it is imperative that any protection device should be able to satisfactorily deal with both HIFs and LIFs. Because of the randomness and asymmetric characteristics of HIFs, their modeling is difficult and numerous papers relating to various HIF models have been published. In this paper, the model of HIFs in transmission lines is accomplished using the characteristics of a ZnO arrester, which is then implemented within the overall transmission system model based on the electromagnetic transients program (EMTP). This paper proposes an algorithm for fault detection and classification for both LIFs and HIFs using Adaptive Network-based Fuzzy Inference System (ANFIS). The inputs into ANFIS are current signals only based on Root-Mean-Square (RMS) values of 3-phase currents and zero sequence current. The performance of the proposed algorithm is tested on a typical 154 kV Korean transmission line system under various fault conditions. Test results demonstrate that the ANFIS can detect and classify faults including LIFs and HIFs accurately within half a cycle.

퍼지추론시스템 기반 지중송전계통 보호용 거리계전 알고리즘 개발 (Fuzzy Inference System Based Distance Relay Algorithm Development for Protecting an Underground Power Cable Systems)

  • 정채균;오성권;박건준;이재규;이종범
    • 전기학회논문지
    • /
    • 제57권2호
    • /
    • pp.172-178
    • /
    • 2008
  • If the fault occurs on the underground power cable systems, the fault current on the sheath has an influence on all sections of cable because it's returned through earth at the directly grounded point and operation point of SVL(Sheath Voltage Limiter) on each insulated joint box. Therefore, the earth resistance and the operation of SVL have an effect on the zero-sequence current, and then the impedance between relaying point and fault point is increased. That causes the overreach of distance relay. For these reasons, the distance relay algorithm for protecting an underground power cable systems hasn't been developed till now. In this paper, new distance relay algorithm is developed for protecting a underground power cable system using fuzzy inference system which is the one of ACI(Advanced Computational Intelligence) techniques. This algorithm is verified by EMTP simulation of real power cable system, and proves to effectively advance the errors

지중송전계통에서 Wavelet 변환과 퍼지추론을 이용한 고장종류판별 및 고장점 추정에 관한 연구 (A Study on the Fault Discrimination and Location Algorithm in Underground Transmission Systems Using Wavelet Transform and Fuzzy Inference)

  • 박재홍;이종범
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제55권3호
    • /
    • pp.116-122
    • /
    • 2006
  • The underground transmission lines is continuously expanded in power systems. Therefore the fault of underground transmission lines are increased every year because of the complication of systems. However the studies dealing with fault location in the case of the underground transmission lines are rarely reported except for few papers using traveling wave method and calculating underground cable impedance. This paper describes the algorithm using fuzzy system and travelling wave method in the underground transmission line. Fuzzy inference is used for fault discrimination. To organize fuzzy algorithm, it is important to select target data reflecting various underground transmission line transient states. These data are made of voltage and average of RMS value on zero sequence current within one cycle after fault occurrence. Travelling wave based on wavelet transform is used for fault location. In this paper, a variety of underground transmission line transient states are simulated by EMTP/ATPDraw and Matlab. The input which is used to fault location algorithm are Detail 1(D1) coefficients of differential current. D1 coefficients are obtained by wavelet transform. As a result of applying the fuzzy inference and travelling wave based on wavelet transform, fault discrimination is correctly distinguished within 1/2 cycle after fault occurrence and fault location is comparatively correct.