• Title/Summary/Keyword: Zero-Crack

Search Result 60, Processing Time 0.038 seconds

The Effect of Initial α' on Low and High Cycle Fatigue Behavior of STS 304 Stainless Steel (STS 304 강의 저주기 및 고주기 피로에 있어 초기 마르텐사이트의 영향)

  • Lee, Hyun-Seung;Sin, Hyung-Ju;Kim, Song-Hee
    • Journal of Industrial Technology
    • /
    • v.21 no.B
    • /
    • pp.331-339
    • /
    • 2001
  • Zero to tension fatigue tests and strain controlled fatigue tests were carried out to find how initial strain induced martensite, ${\alpha}^{\prime}$ affects low and high cycle fatigue behavior and fatigue crack growth mechanisms. Microscopic study and phase analysis were carried out with TEM, SEM, EDAX, Optical Microscope, Ferriscope, and X-ray diffractometry. The amount of Initial ${\alpha}^{\prime}$ was controlled from 0% to 33% by controlling the temperatures for cold working and heat treatment. Lower contents of initial ${\alpha}^{\prime}$ showed higher fatigue resistance in low cycle fatigue but lower fatigue resistance in high cycle fatigue because it is ascribed to the more transformation of ${\alpha}^{\prime}$ martensite during low cycle fatigue and higher ductility. In high cycle fatigue, fatigue life is attributed to the strength and phase transformation of austenite into ${\alpha}^{\prime}$ during fatigue was negligible. ${\gamma}$ boundary, ${\gamma}/twin$ boundary, and ${\gamma}/{\alpha}^{\prime}$ boundary were found to be the preferred site of fatigue crack initiation.

  • PDF

Field Application of Insulation Curing Method with Double Bubble Sheets Subject to Cold Weather (이중버블시트를 이용한 단열양생공법의 한중콘크리트 현장적용)

  • Hong, Seak-Min;Baek, Dae-Hyun;Kim, Jong;Jeon, Chung-Kun;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2008.05a
    • /
    • pp.57-60
    • /
    • 2008
  • This study investigated the results of insulation heat curing method using double layer bubble sheet in slab concrete and mass concrete in cold weather environment. First of all, when double bubble sheets are applied, it was shown that slab concrete was protected from early freezing by remaining between 6 and 15℃ even in case outside temperature drops -9℃ below zero until the 2nd day from piling, and in the case of mass concrete, with the maximum temperature difference between the center and surface less than 4℃, crack occurrence index was close to 2 and no hydration heat crack occurred by internal constraint. The insulation heat preservation curing method using the double bubble sheet applied in this field prevented early freezing owing to stable curing temperature management, deterring concrete strength development delay at low temperature, and obtained the needed strength. Also, it was proven that the method is highly effective and economic for cold weather concrete quality maintenance through curing cost reduction like construction period shortening and labor cost reduction, etc by reducing the process of temporary equipment installation and disassembling.

  • PDF

A Study on the Shape Selection of Mechanical Fastening for the Repair of Fighter Wing (전투기 날개 수리를 위한 기계적 체결의 형상 선정에 관한 연구)

  • Choi, Dongsu
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.24 no.5
    • /
    • pp.467-474
    • /
    • 2021
  • A study on optimal shape selection of a mechanical fastening for the repair of crack defect of ROK Air Force F-5 fighter wing was conducted. The crack defect occurred in the spar of the wing, and the technical manual does not specify the repair method. However, ROK Air Force decided to develop a repair technology for this defect in consideration of various logistic conditions. Three repair shapes for the proper repair were devised and the finite element analysis was performed to examine the structural safety of these three connection members. As a result of the structural safety review, two connection members except one were structurally safe with safety margins over zero because the calculated stress values were at or below the yield strength level. Therefore, two connection members were determined to be able to use for repair under the condition that the aircraft operated within the design limit load. The results of this study would be very useful if the same defect occurs in long-term aircraft operated by the ROK Air Force.

Shrinkage and crack characteristics of filling materials for precast member joint under various restraint conditions

  • Lim, Dong-Kyu;Choi, Myoung-Sung
    • Advances in concrete construction
    • /
    • v.14 no.2
    • /
    • pp.139-151
    • /
    • 2022
  • Filling materials poured into precast member joint are subjected to restraint stress by the precast member and joint reinforcement. The induced stress will likely cause cracks at early ages and performance degradation of the entire structure. To prevent these issues and design reasonable joints, it is very important to analyze and evaluate the restrained shrinkage cracks of filling materials at various restraint conditions. In this study, a new time zero-that defines the shrinkage development time of a filling material-is proposed to calculate the accurate amount of shrinkage. The tensile stresses and strengths at different ages were compared through the ring test (AASHTO PP34) to evaluate the crack potential of the restrained filling materials at various restraint conditions. The mixture which contained an expansive additive and a shrinkage reducing agent exhibited high resistance to shrinkage cracking owing to the high-drying shrinkage compensation effect. The high-performance, fiber-reinforced cement composite, and ultra-high-performance, fiber-reinforced cement composite yielded very high resistance to shrinkage and cracking owing to the pull-out property of steel fibers. To this end, multiple nonlinear regression analyses were conducted based on the test results. Accordingly, a modified tensile stress equation that considered both the geometric shape of the specimen and the intrinsic properties of the material is proposed.

Shear Behavior of RC Beams Using Alkali Activated Slag Concrete (알칼리 활성 슬래그 콘크리트를 사용한 RC 보의 전단거동)

  • Choi, Sung;Lee, Kwang-Myong;Yoo, Sung-Won
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.3 no.1
    • /
    • pp.58-63
    • /
    • 2015
  • Several researches on cement zero concrete using alkali-activators have been conducted to investigate its fundamental material properties such as slump, strength and durability, however, research on the structural behavior of relevant members involving the elastic modulus, stress-strain relationship is essential for the application of this cement zero concrete to structural members. In this paper the shear behavior of reinforced concrete beams using 50 MPa-alkali activated slag concrete was experimentally evaluated. To achieve such a goal, six reinforced concrete beam specimens were fabricated and their shear behaviors were observed. The maximum difference between test results and analysis results in crack shear stress for beam specimens without stirrups is 31%, while that for beam specimens with stirrup is 15%. Furthermore, it is also found that the shear strength of alkali activated slag concrete is by 22~57% greater than the nominal shear strength calculated by design code, implying that shear design equations would provide conservative results on the safety side.

A Study on the Vibration Characteristics of Thin Plate with Crack under Tension using ESPI (ESPI기법에 의한 하중을 받는 균열 박판의 진동 특성에 관한 연구)

  • Kim, Koung-Suk;Kang, Ki-Soo;Choi, Ji-Eun;Park, Chan-Ju;Hong, Jin-Who
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.21 no.2
    • /
    • pp.182-188
    • /
    • 2001
  • This paper presents the vibration characteristics of a rectangular plate with $45^{\circ}$ oblique crack subjected to a uniaxial tension. The experiment is adopted by the time-average Electronic Speckle Pattern Interferometry(ESPI) method. The natural frequency and mode shape are considered accurately according to the increase of tensile load. When tensile load is zero, the vibration modes we agreed with the smooth and the $45^{\circ}$ obliquely cracked plate. But according to the increasement of load it is shown that vibration modes are extremely varied. The effects of the crack under the vibration are discussed in detail. It is indicated that the increase of load makes the variation of the frequencies and modes complicate in the range of even a small load. The results are agreed with the FEM analysis within 5%.

  • PDF

Fracture Behavior of Concrete and Equivalent Crack Length Theory (콘크리트의 파괴거동규명과 등가균열(等價龜裂)길이 이론확립(理論確立)에 관한 연구)

  • Oh, Byung Hwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.7 no.2
    • /
    • pp.59-68
    • /
    • 1987
  • Several series of fracture tests were conducted to explore the fracture characteristics and to determine the fracture energy of concrete. A stable three-point bend test was employed to generate the load-deflection curves. The fracture energy may then be calculated from the area under the complete load-deflection curve. The initial notch-to-beam depth ratio (${\alpha}_0$/H) was varied from zero to 0.6. The prediction formula for the fracture energy of concrete is also derived and is found to depend on the tensile strength and aggregate size. The proposed fracture energy formula can be used for the fracture analysis of concrete structures. The present study also devises an equivalent crack length concept to predict the maximum failure loads of concrete beams. A simple formula for the equivalent crack length is proposed.

  • PDF

Non-Fourier 열전달에 대한 소고

  • 김우승
    • Journal of the KSME
    • /
    • v.31 no.8
    • /
    • pp.735-744
    • /
    • 1991
  • 확산모델과 파모델의 결과에 있어 큰 차이가 일어나는 경우를 요약하면 다음과 같다. 1) 과도기 간이 짧다. 2) 작동온도가 아주 낮다. 3) 온도구배가 상당히 크다. 이때3)의 경우는 서로 다른 물질들이 접촉된 경우 또는 높은 열유속이 있는 경우 또는 얇은 표면층 등을 갖는 문제들의 공 통적인 특징이다. Non-Fourier 열전도 문제를 이용해 온도 분포를 예측해야 하는 실제적인 몇 가지 예를 살펴 보면 레이저 기술 또는 절대온도 영(zero)에 접근하는 온도에서의 액체 헬륨을 다루는 저온공학연구 또는 1/$10^{6}$Inch 정도의 표면조도가 관심사인 정밀공학 등을 들 수 있다. 또한 상당히 높은 강도의 열원이 작용될 때 고체에서의 크랙이나 보이드(void) 같은 국소 결함은 확산거동이 나타나기에 요구되는 시간보다 짧은 시간 구간에서 발생되어질 수 있으며, 크랙발생의 방향과 같은 것들은 hyperbolic 모델에의해 예측되어져야만 한다. 특히 움직이는 열원 또는 propagating crack tip을 갖는 경우에 그들 주위에서의 온도장을 규정짓는 가장 중요한 변 수는 열마하수 M이며, 아음속에서 초음속 영역으로 천이될 때 물리적 양들의 변화에 있어서 일어나는 현상들은 열충격의 형성에 기인하는데 이러한 현상들은 확산 모델로서는 예측될 수 없는 특징들이다. 이상에서 살펴볼 때 non-Fourier 모델에 대해 관심을 기울일 필요가 있다고 사료된다.

  • PDF

Application of Insulation Curing Method with Double Bubble Sheets Subjected to Cold Weather (이중 버블시트를 이용한 단열양생공법의 한중시공 적용 사례)

  • Hong, Seak-Min;Lee, Chung-Sub;Kim, Jong;Jeon, Chung-Kun;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.1001-1004
    • /
    • 2008
  • This study reviewed the results of utilization of insulation heat curing method using double layer bubble sheet in slab concrete and mass concrete in cold weather environment. First of all, when double layer bubble sheets are applied, it was shown that slab concrete was protected from early freezing by remaining between 6 and $10^{\circ}C$ even in case outside temperature drops $10^{\circ}C$ below zero until the 2nd day from piling, and in the case of mass concrete, with the maximum temperature difference between the center and surface less than $6^{\circ}C$, crack occurrence index was close to 2 and no hydration heat crack occurred by internal constraint. The insulation heat preservation curing method using the double bubble sheet applied in this field prevented early freezing owing to stable curing temperature management, deterring concrete strength development delay at low temperature, and obtained the needed strength. Also, it was proven that the method is highly effective and economic for cold weather concrete quality maintenance through curing cost reduction like construction period shortening and labor cost reduction, etc by reducing the process of temporary equipment installation and disassembling.

  • PDF

Probabilistic Fatigue Life Evaluation of Steel Railway Bridges according to Live-Dead Loads Ratio (강철도교의 활하중-사하중 비에 따른 확률기반 피로수명 평가)

  • Lee, Sangmok;Lee, Young-Joo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.1
    • /
    • pp.339-346
    • /
    • 2019
  • Various studies have been conducted to evaluate the probabilistic fatigue life of steel railway bridges, but many of them are based on a relatively simple model of crack propagation. The model assumes zero minimum stress and constant loading amplitude, which is not appropriate for the fatigue life evaluation of railway bridges. Thus, this study proposes a new probabilistic method employing an advanced crack propagation model that considers the live-dead load ratio for the fatigue life evaluation of steel railway bridges. In addition, by using the rainflow cycle counting algorithm, it can handle variable-amplitude loading, which is the most common loading pattern for railway bridges. To demonstrate the proposed method, it was applied to a numerical example of a steel railway bridge, and the fatigue lives of the major components and structural system were estimated. Furthermore, the effects of various ratios of live-dead loads on bridge fatigue life were examined through a parametric study. As a result, with the increasing live-dead stress ratio from 0 to 5/6, the fatigue lives can be reduced by approximately 30 years at both the component and system levels.