• Title/Summary/Keyword: Zero velocity

Search Result 394, Processing Time 0.023 seconds

Investigation of Mössbauer Spectra of Ba2Mg0.5Co1.5(Fe0.99In0.01)12O22 (Ba2Mg0.5Co1.5(Fe0.99In0.01)12O22의 뫼스바우어 분광 연구)

  • Lim, Jung-Tae;Kim, Chin-Mo;Kim, Chul-Sung
    • Journal of the Korean Magnetics Society
    • /
    • v.22 no.1
    • /
    • pp.19-22
    • /
    • 2012
  • $Ba_2Mg_{0.5}Co_{1.5}(Fe_{0.99}In_{0.01})_{12}O_{22}$ was prepared by the conventional solid-state reaction method, and studied by x-ray diffractometer, vibrating sample magnetometer, and Mossbauer spectrometer. The crystal structure was determined to be a single-phased rhombohedral with space group R-3m. Magnetization value were $M_s$ = 28.6 emu/g at 295 K. The hysteresis loops indicate that all the samples are ferrimagnetic behaviors. Mossbauer spectra of $Ba_2Mg_{0.5}Co_{1.5}(Fe_{0.99}In_{0.01})_{12}O_{22}$ have been 6-sextet taken at various temperatures ranging from 4.2 to 620 K. Based on the isomer shift (${\delta}$) values of all samples, the charge states were found to be $Fe^{3+}$ state at all temperatures, the Curie temperature was determined to be 630 K by the ZVC curve.

Study of Spectral Doppler Waveform Interpretation and Nomenclature in Peripheral Artery (말초 동맥 분광 도플러 파형 해석 및 명명법에 대한 고찰)

  • Ji, Myeong-Hoon;Seoung, Youl-Hun
    • Journal of the Korean Society of Radiology
    • /
    • v.16 no.5
    • /
    • pp.649-660
    • /
    • 2022
  • In 1959, Satomura used spectral Doppler ultrasound to express the velocity of red blood cells according to time change, and Kato defined a zero-base line that could tell the direction of blood flow, making it possible to know the direction of blood flow. This became the basis for the widely used classifications of Triphasic, Biphasic, and Monophasic. However, the above classification has limitations that confuse users with the meaning and timing of use in a clinical environment. As a result, the American Society for Vascular Medicine (SVM) and the Society for Vascular Ultrasound (SVU) A consensus document on Doppler waveform analysis was declared by the joint committee. This study tried to review this consensus and to suggest nomenclature and modifiers that can be used in the domestic vascular ultrasound clinical field. The joint committee formed by SVM and SVU recommended that the use of the triphasic waveform and the biphasic waveform be used as a multiphasic waveform rather than being used due to the ambiguity of interpretation. In addition, it was agreed to name the hybrid-type waveform, which is a monophasic and high-resistance waveform, which has always been a problem of interpretation in a clinical environment, as an intermediate resistive waveform. In addition, in order to increase the communication efficiency between the interpreter and the sonographer, waveform analysis was classified into a main descriptor and a modifier, and it was recommended to use a single nomenclature by unifying various synonyms. It is expected that this literature review will provide accurate arterial spectral Doppler waveform interpretation and an agreed-upon nomenclature to radiologists performing vascular ultrasound examination in clinical practice, and will be utilized as basic data that can contribute to the improvement of public health.

Impact of the lateral mean recirculation characteristics on the near-wake and bulk quantities of the BARC configuration

  • Lunghi, Gianmarco;Pasqualetto, Elena;Rocchio, Benedetto;Mariotti, Alessandro;Salvetti, Maria Vittoria
    • Wind and Structures
    • /
    • v.34 no.1
    • /
    • pp.115-125
    • /
    • 2022
  • The high-Reynolds number flow around a rectangular cylinder, having streamwise to crossflow length ratio equal to 5 is analyzed in the present paper. The flow is characterized by shear-layer separation from the upstream edges. Vortical structures of different size form from the roll-up of these shear layers, move downstream and interact with the classical vortex shedding further downstream in the wake. The corresponding mean flow is characterized by a recirculation region along the lateral surface of the cylinder, ending by mean flow reattachment close to the trailing edge. The mean flow features on the cylinder side have been shown to be highly sensitive to set-up parameters both in numerical simulations and in experiments. The results of 21 Large Eddy Simulations (LES) are analyzed herein to highlight the impact of the lateral mean recirculation characteristics on the near-wake flow features and on some bulk quantities. The considered simulations have been carried out at Reynolds number Re=DU_∞/ν=40 000, being D the crossflow dimension, U_∞ the freestream velocity and ν the kinematic viscosity of air; the flow is set to have zero angle of attack. Some simulations are carried out with sharp edges (Mariotti et al. 2017), others with different values of the rounding of the upstream edges (Rocchio et al. 2020) and an additional LES is carried out to match the value of the roundness of the upstream edges in the experiments in Pasqualetto et al. (2022). The dimensions of the mean recirculation zone vary considerably in these simulations, allowing us to single out meaningful trends. The streamwise length of the lateral mean recirculation and the streamwise distance from the upstream edge of its center are the parameters controlling the considered quantities. The wake width increases linearly with these parameters, while the vortex-shedding non-dimensional frequency shows a linear decrease. The drag coefficient also linearly decreases with increasing the recirculation length and this is due to a reduction of the suctions on the base. However, the overall variation of C_D is small. Finally, a significant, and once again linear, increase of the fluctuations of the lift coefficient is found for increasing the mean recirculation streamwise length.

Investigation of Rock Slope Failures based on Physical Model Study (모형실험을 통한 암반사면의 파괴거동에 대한 연구)

  • Cho, Tae-Chin;Suk, Jae-Uk;Lee, Sung-Am;Um, Jeong-Gi
    • The Journal of Engineering Geology
    • /
    • v.18 no.4
    • /
    • pp.447-457
    • /
    • 2008
  • Laboratory tests for single plane sliding were conducted using the model rock slope to investigate the cut slope deformability and failure mechanism due to combined effect of engineering characteristics such as angle of sliding plane, water force, joint roughness and infillings. Also the possibility of prediction of slope failure through displacement monitoring was explored. The joint roughness was prepared in forms of saw-tooth type having different roughness specifications. The infillings was maintained between upper and lower roughness plane from zero to 1.2 times of the amplitude of the surface projections. Water force was expressed as the percent filling of tension crack from dry (0%) to full (100%), and constantly increased from 0% at the rate of 0.5%/min and 1%/min upto failure. Total of 50 tests were performed at sliding angles of $30^{\circ}$ and $35^{\circ}$ based on different combinations of joint roughness, infilling thickness and water force increment conditions. For smooth sliding plane, it was found that the linear type of deformability exhibited irrespective of the infilling thickness and water force conditions. For sliding planes having roughness, stepping or exponential types of deformability were predominant under condition that the infilling thickness is lower or higher than asperity height, respectively. These arise from the fact that, once the infilling thickness exceeds asperities, strength and deformability of the sliding plane is controlled by the engineering characteristics of the infilling materials. The results obtained in this study clearly show that the water force at failure was found to increase with increasing joint roughness, and to decrease with increasing filling thickness. It seems possible to estimate failure time using the inverse velocity method for sliding plane having exponential type of deformability. However, it is necessary to estimate failure time by trial and error basis to predict failure of the slope accurately.